

ShowMe: Show Me Related Work
Summary Report

Kishan Kumar Ganguly

Eusha Kadir
Aquib Azmain
Moumita Asad

Rafed Muhammad Yasir

March 23, 2018

Contents
1 Running the product 3

2 User manual 3

3 Introduction 6

4 Requirement Analysis 7

4.1 Overview 7

4.2 Assumption 8

4.3 Scope 8

4.4 Requirement Specification 8

2.4.1. Use cases 8

2.4.2. Activity Diagrams 11

2.4.3. Entity Relationship Diagram 14

2.4.4. Schema Tables 14

5 Architectural Design 15

6 Management Plan 17

6.1 Team Member 17

6.2 Team Coordination 17

7 Source Code Management 18

8 Planning and Time Management 18

9 Implementation 19

10 Verification and Validation Activities 20

11 Challenges and Lessons Learned 21

11.1 Challenges 21

11.2 Lessons Learned 22

12 Conclusion 22

References 23

1 Running the product
● Download the virtualbox machine (.ova file) from this folder

https://drive.google.com/drive/folders/1DdWcvmWOvh5UZSnrks8Us9s9uO75CzYU?
usp=sharing

● Import the machine in virtualbox. This is a Lubuntu machine with username=showme and
password=showme.

● Open terminal and navigate to the showme folder on which is on the desktop. From the
terminal run the run.sh script. The server should now be running.

● Open a browser (preferably in the host machine since the lubuntu machine screen is small.
Hit the IP address of the guest machine (or localhost if you’re on the guest machine). You
should see the application page.

● If you’re facing any problem doing the above kindly contact bsse0733@iit.du.ac.bd. For
running the project properly kindly follow the next section (recommended).

2 User manual
This project is heavily based on scraping Google scholar and pdf parsing. Providing a
good support for scraping and parsing pdfs in a matter of few months is very difficult. We
have tried our best to provide as much support as possible. For the best results please
generate graph of the following papers:
● The WEKA data mining software
● Condensed Cube: An Effective Approach to Reducing Data Cube Size
● PrefixCube: prefix-sharing condensed data cube

1. Enter any above mentioned keyword in the search box. Under the search box a list

of recently searched papers is shown.

2. If you want to use advanced search, click the advanced search button and enter

searching criteria.

3. Click the search button, a list of search results will be displayed.

4. Click “generate graph” button of the search result whose citation graph you want
to view.The PDF citing the others will be in the center. All the nodes around the
center node are referenced papers. Edges of the graph are color coded based on
rating provided by users.

5. If you want to view a PDF, click on that particular node. If the PDF is available,

the PDF will open in a new tab. Otherwise site where the PDF was found will be
open. If site link is also unavailable, an alert box will be shown.

6. If you hover a node title, author, journal, year, volume will be shown.

7. If you want to view citation snippets, click on the edges. You can navigate left or

right if there are multiple snippets.

8. You can also rate edges according to the relatedness of the papers. You must be

logged in for this purpose.
9. Graph nodes can be filtered based on 4 criteria (title, author, journal, year) Two

types of filtering option are available (show only and remove only). Remove only
will remove nodes having the criteria and showing nodes will only show nodes
containing that criteria.

3 Introduction
SCORE 2018 is a worldwide competition organized by the 40th International Conference
on Software Engineering (ICSE) for promoting Software Engineering practice. Student
teams are required to design and implement one among the several projects given, proving
their skills in software engineering.

Our team consists of a masters student and four undergrad students from the Institute
of Information Technology, University of Dhaka. The task of the masters student was to
administer the students during the development process.

We have selected “ShowMe: Show me related work”, which is a project for finding
related research papers. We chose it as our project because we saw in it the possibilities
immediately. At our institute we have a group of students and teachers very much
dedicated to research work. We have seen their efforts in doing literature reviews by
reading many research papers at a time. We thought that doing this project would help
them to some extent, making the task of exploring papers a little easier.

This document contains requirement analysis, architectural design, tradeoffs and
choices, management plan, source code management, implementation and platform
choices, testing methods, challenges faced and lessons learned.

4 Requirement Analysis

4.1 Overview
ShowMe is a web application that will help the research community to find related work
and understand relationship among them.

Whenever a user searches a paper, a list of relevant papers are shown by taking data
from Google Scholar. A user may also make an advanced search by specifying the
following criteria:

● Articles with all of the words
● Articles with the exact phrase
● Articles with at least one of the words
● Articles without the words
● Words occur in the title/anywhere in the article
● Articles authored by
● Articles published in
● Articles dated between

When an item on the list is clicked, a citation graph of the paper is shown. Each node
in the graph represents a scholarly information. If an article cites another article, a
directed edge to the cited article is shown. Hovering mouse on a node shows following
information of the article:

● title
● author
● journal
● pages
● volume
● year

Clicking on a node, the pdf of the publication is shown. If the pdf is not available the
user is taken to the site where the paper was found.
Clicking on an edge, user can view text snippets of how one paper cites another. Edges are
color coded according to relationship among papers. A user can rate an edge to mark the
relatedness between two papers. A user can rate an edge out of 5 according to strong or
weak relationship among the papers. Only a logged in user can rate an edge. A user may
sign up using an email address.

The generated graph can be filtered by searching. A search key can be applied on the
title, author, year and journal. The user can select if the filter applied will remove nodes

from the graph or show only those nodes. Users can view recently made search queries
also.

4.2 Assumption
● Metadata of papers will be available (title, author, journal, pages, year of the

article).
● Searching by title and author names retrieves correct PDF from Google

Scholar.
● Number of requests to be made to Google Scholar will not exceed the request

limit of Google Scholar.

4.3 Scope
● We will use information from the search results provided by Google Scholar.
● Reference lists will be extracted from PDFs. However, numerous types of

referencing styles are available. Currently we are supporting 44 types of IEEE
Bibliography styles.

4.4 Requirement Specification

2.4.1. Use cases

The following use cases show the list of events that take place between the users and the
system to accomplish the goal. The use case template by Pressman has been followed.
Level 0: ShowMe
Primary actors: Unauthenticated user, Authenticated user.
Goal in context: The diagram represents the whole ShowMe application.

Figure 1: Use case level 0 - ShowMe

Level 1: Modules of ShowMe
Primary actors: Unauthenticated user, Authenticated user.
Goal in context: The diagram shows all the modules of the ShowMe.

Figure 2: Use case Level 1 - Modules of ShowMe

There are four modules in ShowMe application.
Level 1.1: Authentication
Level 1.2: Graph Generation
Level 1.3: Node Management
Level 1.4: Edge Management

Level 1.1: Authentication
Primary actors: Unauthenticated user, Authenticated user.
Goal in context: The diagram refers to the details of the Authentication module of level
1.

Figure 3: Use case Level 1.1 - Authentication

Actions and Replies
A1: Unauthenticated user enters email address and password to register.
R1: System checks whether any personal account exists under the same email or not. If
the request is valid, registration is successful.
A2: Authenticated user enters email address and password
R2: He/she is allowed to rate edges upon entering correct credentials.
Level 1.2: Graph Generation
Primary actors: Unauthenticated user, Authenticated user.

Goal in context: The diagram refers to the details of the Graph Generation module of
level 1.

Figure 4: Use case Level 1.2 - Graph Generation

Actions and Replies
A1: Unauthenticated user or Authenticated user searches for papers with or without
advanced search.
R1: System provides result by taking data from Google Scholar. This result shows a list of
related papers.
A2: Unauthenticated user or Authenticated user clicks on a paper from the list.
R2: System generates citation graph of the paper.
A3: Unauthenticated user or Authenticated user wants to view recently searched papers.
R3: System provides the list of recently searched papers.

Level 1.3: Node Management
Primary actors: Unauthenticated user, Authenticated user.
Goal in context: The diagram refers to the details of the node management module of
level 1.

Figure 5: Use case Level 1.3 - Node Management

Actions and Replies
A1: User hovers mouse on a node.
R1: information about a pdf (title, author, journal, pages, year, volume) is shown.
A2: User clicks on a node.
R2: The pdf of the publication is shown. If the pdf is unavailable, the user is taken to the
site where the paper was found.
A3: User wants to filter graph.
R3: Graph is filtered upon selected criteria.

Level 1.4: Edge Management
Primary actors: Unauthenticated user, Authenticated user.
Goal in context: The diagram refers to the details of the Edge Management module of
level 1.

Figure 6: Use case Level 1.4 - Edge Management

Actions and Replies
A1: Unauthenticated user or Authenticated user wants to view text snippets of citations.
R1: System shows citation snippets.
A2: Authenticated users rate edges.
R2: System stores rating.

2.4.2. Activity Diagrams

Activity diagram represents the complete flow of a particular use case.
Figure 7 represents the activity diagram of level 1.1 Authentication module.

Figure 7: Activity diagram of Authentication module

Figure 8 represents the activity diagram of level 1.2: Graph Generation module.

Figure 8: Activity diagram of Graph Generation module

Figure 9 represents the activity diagram of level 1.3: Node Management module.

Figure 9: Activity diagram of Node Management module

Figure 10 represents the activity diagram of level 1.4: Edge Management module.

Figure 10: Activity diagram of Edge Management module

2.4.3. Entity Relationship Diagram

Figure 11 shows Entity Relationship diagram of showme project. For simplicity only
primary keys are shown in the ER diagram.

Figure 11: Entity Relationship Diagram of ShowMe

2.4.4. Schema Tables

We have derived the following tables from the ER diagram (Figure :11)
User
Attribute Type Size
email varchar 150
password varchar 65
created datetime

Node
Attribute Type Size
ID bigint 20
Title varchar 400
journal varchar 150
volume varchar 10
pages varchar 10
year year

Author
Attribute Type Size
ID bigint 20
name varchar 100
Node_ID varchar 20

Edge
Attribute Type Size
ID bigint 30
SourceNode_ID bigint 20
TargetNode_ID bigint 20

Citation Snippet
Attribute Type Size
ID bigint 20
Edge_ID bigint 30
text text

Rating
Attribute Type Size
Email_ID varchar 150
Edge_ID bigint 30
value tinyint

5 Architectural Design
Our application is based on the classic 3-tier architecture. The software is divided into a
presentation layer, logic layer and a persistence layer which is shown in figure 12. [1, 2]

Figure 12: 3-tier Architectural design of ShowMe

1. Presentation Layer: The presentation layer is where all the user interactions take
place. This is typically a browser for web projects. For User’s registration, login
information, search keys, edge ratings are sent to the logic layer through this layer.
Again this layer is used for displaying search result and citation graph.

2. Logic Layer: Our logic layer is a REST API that provides URL endpoints for the
presentation layer to communicate. The logic layer is responsible for processing a
user’s request. Through the logic layer user’s registration, login information, search
keys, edge ratings are processed. It is also used for making request to Google
scholar, processing the result returned by Google Scholar, parsing PDF, extracting
reference list and citation snippets. Information are returned to the client from this
layer.

3. Persistence layer: Persistence layer is responsible for storing, updating and
retrieving data into database. It is protected from the direct access by user and can
only be accessed by the logic layer. Information generated for serving a user is
stored in this layer so that future requests can be served faster.

When the client requests the server for the application a single page application is
loaded. Later on all requests to the server are AJAX calls. The server replies in JSON.
The server stores and retrieves data from the database server. We have used
freecite.library API. for parsing references extracted from PDF.

Choices and tradeoffs

Initially we thought of scraping google scholar for a paper’s metadata and citation data.
But using this approach would mean we had to make huge number of requests to google
scholar. As google scholar disallows bots we would eventually end up being blocked. To
minimize the number of requests sent to Google Scholar we changed our data extraction
approach by using both Google Scholar and parsing PDFs. Search results are made using
Google Scholar and citation graph is made parsing PDFs.

6 Management Plan

6.1 Team Member

Serial
No

Member Name Email Address Role Area of Expertise

1 Kishan Kumar
Ganguly

bsse0505@iit.du.ac.b
d

Scrum
Master

Software Architecture,
machine learning and self-
adaptive systems

2 Eusha Kadir bsse0708@iit.du.ac.b
d

Develop
er

Machine Learning and
Artificial Intelligence

3 Aquib Azmain bsse0718@iit.du.ac.b
d

Designer Designing and Front-end
Development

4 Moumita Asad bsse0731@iit.du.ac.b
d

Develop
er

Software Requirement
Analysis

5 Rafed
Muhammad
Yasir

bsse0733@iit.du.ac.b
d

Develop
er

Web Development and
Networking

6.2 Team Coordination
For team management, we followed Scrum. For agile software development, Scrum is a
popular methodology. It is chosen because it is lightweight and simple to understand.

The roles are chosen according to the knowledge of the members. Our Scrum Master is
Kishan Kumar Ganguly. In our development team, there are four members: Rafed
Muhammad Yasir, Moumita Asad, Eusha Kadir and Aquib Azmain.

For working together on a document we used Google Docs [3]. This is a collaborative
platform to share and edit our document among team members. Our diagrams are made
with draw.io [4]. In draw.io diagrams can be made collaboratively.

We have used Trello [5] project management application to assign tasks to member. In
every scrum meeting, progress of the tasks were discussed. When tasks were completed,
they were marked as complete and new tasks were assigned.

7 Source Code Management
To work collaboratively we used Git to manage our project. Our project is hosted at
Github [6]. We worked in a distributed manner and each of us pushed our code to the
remote to keep everyone updated. Git also helped managing versions and different
branches of our project. The link of our project is: https://github.com/rafed123/showme

8 Planning and Time Management
We have followed agile process for the project. The product backlog, sprint backlog and
currents sprint have been maintained in Trello. The time distribution for each task has
also been done using Trello. Figure 14 shows the initial scrum board of the project.

Figure 14: Trello Scrum Board for ShowMe

9 Implementation
The whole implementation has three parts- the database for storing data, the web api for
data communication and the UI for presentation.

For the database we used MySQL RDBMS (Relational Database Management System).
MySQL was chosen for its simplicity and ease of use. It is easy to install, use, as well as
scalable and manageable. Apart from our own database we have used the freecite API
which is a free citation parser that parses document citations into fielded data. For
parsing, it uses the conditional random fields model.

For serving the client we made a REST API that receives client requests and serves
JSON data (search results, citation data). This API is written in Python. The reason we
chose Python is that during the initial phase of our project we had to try out many
prototypes before actually selecting one for the project. Python is very suitable for
designing prototypes as a working implementation can be produced in minimal code. Not
only is it concise it's also easy for others to read.

We also used Flask [7] framework for making the web API. Flask is a micro-framework
written in Python. We considered Django but realized it would be too heavy for our
project. Flask is a lot more lightweight framework and is easier to use.

Libraries
(Server Side)

beautifulsoup4
bibtexparser
Flask
Flask-Cors
pdfminer.six
xmltodict
pymysql
pytest
requests
codecov
pytest
pytest-cov
setuptools
pyjwt

Libraries
(Client Side)

bootstrap
Jquery
Cytoscape.js

Cytoscape.qtip
starrr.js

Frameworks Angular 5

Our front end is built using Angular 5 [8]. Angular is a framework for making single

page applications. It also allows the testing of front end components. For building the
citation graph we used cytoscape.js [9] library. There were quite a handful of graph
libraries to choose from but this library showed very good backward compatibility with
older browsers and hence it was preferred.

10 Verification and Validation Activities
Verification checks whether we are building the product right where validation checks
whether we are building the right product. We first developed a verification and
validation plan which consisted of standards, schedules, resource summary, techniques and
methods etc. As part of the verification, we conducted reviews and manual inspection on
each of the work products. The requirement, design documents, codes and test cases were
thoroughly reviewed. In the documents, we checked for inconsistencies, logical errors,
tractability, understandability, completeness and the level of detail. For code reviews, we
performed informal walkthroughs. To perform code reviews, apart from manual
inspection, we also took assistance from a static analysis tool called Pylint.

 We further performed three levels of validation such as unit, integration and system
testing. We wrote unit test case plans where we mentioned the test case id, method/
function, input, expected output and priority of the test case. We generated most of the

Verification Activities Validation Activities

Artifact Review (Manual)
● Check inconsistencies
● Logical errors
● Tractability
● Understandability
● Completeness
● Level of detail

Unit test plan
● ID
● Method
● Input
● Expected Output
● Priority

Unit test method
● Generate Control flow graph
● Consider valid independent path

Unit test tool
● unittest API for python

Source Code Review (Manual &
Automated)
● Informal walkthrough
● Static analysis (Pylint)

Integration testing - Travis CI is used to
ensure proper integration

 System testing
● Black box testing
● Load testing (Apache JMeter)

test cases by generating control flow graphs from the source code and considering inputs
that lead to traversing a valid independent path. Some of the unit test cases are generated
by manually inspecting the code. For unit testing, we used unittest for python. We
integrated Travis CI to our project repository at Github and as a result test cases are run
at each integration to our codebase. This ensures that each new piece of code added does
not break the codebase. Thus healthier software is developed. We further performed black
box testing where we mostly considered boundary value analysis and equivalence class
testing techniques. We also planned for load testing which we will perform using Apache
JMeter. We are also preparing acceptance test cases according to the requirements which
we will use to test whether the product fits the user. We have also primarily collected
feedback on the Uner Interface (UI) from the researchers of the Institute of Information
Technology, University of Dhaka and working to furnish the UI.

11 Challenges and Lessons Learned

11.1 Challenges
The project was full of challenges. Some of those challenges are:

● Google Scholar disallows bots. As a result, limited queries has to be made to
avoid blocking. So extracting data from Google Scholar was challenging.

● Because of the rate limit of google scholar, designing was also very challenging.
We had to try out many different ways before actually selecting one that would
be suitable for our project (see Choices and tradeoffs for details).

● During our testing phase we had to make numerous requests to google scholar.
To continue

● Extracting reference list from pdf was also challenging as there is no fixed format
of referencing.

● Extracting individual reference was also difficult as we could not locate the
starting and ending point of a reference with high accuracy. We had to design an
algorithm for proper detection.

11.2 Lessons Learned
● We were inexperienced regarding research papers as most of us have not done

any research work yet. Through this project we came to know a lot about
research paper which will help us in future.

● Working with pdfs was a new experience for us.
● We have performed software testing before but integrating with Travis CI was

something we had not done before.
● We have performed project management using Trello and using Trello was

completely new for us.
● This was our first big project in python. Through this project we have learnt

much about python itself and the huge number of libraries it offers including the
testing frameworks.

12 Conclusion
We are very happy working with this project and it was a new learning experience for us.
We have tried to put the best software engineering practices into play and implemented
as many features as we could. Before we started writing the code we thoroughly went
through the design phases. Our design phases is reflected in the requirements engineering
and architecture design. There is still much room for expansion of this project.

● At present we are generating citation graph by extracting reference list from pdfs
only. Our coverage can be expanded by supporting extracting reference list from
websites like IEEE, Research Gate, SpringerLink and others.

● Currently we are showing relationship between two papers based on user rating.
Following relationships can be developed also:

o A particular university cites which university the most.
o Measuring textual similarity between papers.
o Which authors work more together.

● Adding PDFs to drive using google authentication.
We would like to thank Professor Milos Gligoric who helped us time to time by replying

to our queries regarding this project. We would also like to thank Professor Christine
Julien who guided us during the time of registration.

References

[1] »Defenition of 3-tier-application,« [Online]. Available:
searchsoftwarequality.techtarget.com/definition/3-tier-application. [Last accessed
on 5 January 2018].

[2] »Benefits of 3-tier architecture,« [Online]. Available: www.izenda.com/blog/5-
benefits-3-tier-architecture. [Last accessed on 10 January 2018].

[3] »Google docs,« [Online]. Available: docs.google.com.
[4] »Draw.io,« [Online]. Available: github.com/jgraph/drawio.
[5] »Trello,« [Online]. Available: www.trello.com.
[6] »Github,« [Online]. Available: www.github.com.
[7] »Flask,« [Online]. Available: flask.pocoo.org.
[8] »Angular 4,« [Online]. Available: angular.io.
[9] »Cytoscape,« [Online]. Available: js.cytoscape.org.

