
Towards the Detection and Refactoring of Message Chains in Java Code

Abstract— Code smells are patterns in software code that
threaten the software’s maintainability. In an effort to maintain
software quality, these code smells should be detected and
refactored. Message Chain is one such code smell which occurs
when inefficient responsibility delegations create chains of
consequent method calls, resulting in code that becomes difficult
to interpret and maintain. This study proposes a method of
detecting and suggesting the refactoring for Message Chains.
Message Chains are detected through finding method call chains
consisting of instances surpassing a threshold number, namely
two. Refactoring suggestions are provided by transferring or
cloning the target method in the caller Classes. An empirical
study is also conducted using Chain Breaker on multiple
versions of two popular open-source repositories, Proguard and
Incubator-Dubbo-Dubbo. In the study, a correlation between
project size (LOC) and the number of Message Chains is found.

I. INTRODUCTION

Software systems need to continuously cope with ever-
changing requirements and environments, resulting in con-
stant code modification and the software’s evolution. A key
requirement for software to evolve is the readability of code,
enabling easy interpretation and fast change. But poor or
lazy solutions hinder readability. Termed as code smells,
these unreadable and unmanageable codes may slow down
and threaten the software’s evolution, making it difficult for
developers to implement necessary changes.

Fowler [1] presented 22 code smells, structures in the
source code that may need refactoring. One of those code
smells, Message Chains, is analyzed in this study. Message
Chains are large chains of method calls caused by improper
responsibility delegations in classes. Prior to this work, there
have been two existing tools [6][5] for Java, capable of
detecting Message Chains. However, neither of these provide
automation or suggestions for refactoring.

In this study, a methodology is proposed where Message
Chains are detected and refactoring suggestions are provided.
Detection is conducted by finding long method call chains
and labeling ones with more than two instances as Message
Chains. Suggestions for refactoring are developed by creating
intermediary methods in the related classes.

An empirical study is conducted to understand the evolu-
tionary properties of Message Chains. Two popular open-
source software repositories – Proguard and Incubator-
Dubbo-Dubbo – are analyzed to identify a correlation be-
tween software project size (measured in KLOC) and Mes-
sage Chain(s). Three different metrics are used for Message
Chains: total Message Chains, Message Chains per KLOC
and Maximum Chain Degree. It is found that, as the size of a
project increases, so does the number, frequency and degree
of Message Chains.

II. BACKGROUND

Message Chains are created when, in order to complete
a task, a method of another class is needed. But in order
to reach the needed class, one or more classes are called
in between [1]. The Message Chain smell generally arises
when a particular class is highly coupled with other classes
in chain-like delegations. To illustrate this smell through
example, assume that there is Class A which needs data from
Class E. Also assume that in order to get the object of Class
E, an object of Class D is needed, which can be retrieved
from an object of Class C and so forth as described in the
sample code snippet below.

a.getB().getC().getD().getE().getTheData();

Unfortunately in this example, class A is tightly coupled
with class B, C and D to reach class E; even though only
a reference to Class E is needed. Statements with Message
Chain, similar to the one depicted above, can decrease code
readability and increase maintenance efforts.

III. RELATED WORK

Fowler et al. [1] identified 22 code smells existing in
software systems. They introduced and defined Message
Chains as “a long line of getThis methods, or as a sequence
of temps”. Zhang et al. [2] elaborated that definition to
include a pattern-based detection process. They mentioned
the inclusion of a threshold value which will determine
whether a series of “getter” methods or temp variables
constitute as a Message Chain.

Zhang et al. [3] empirically analyzed 6 code smells – Du-
plicated Code, Data Clumps, Switch Statements, Speculative
Generality, Message Chains, and Middle Man – to find their
relationship with faults. They show that Message Chains are
associated with a higher numbers of faults in code.

In regards to the detection of code smells, a wide variety
of code smell measurement tools have been developed. Tools
such as JDeodrant, InFusion, iPlasma and PMD have been
developed to detect various code smells such as Feature
Envy, God Class and Long Method. However, these tools
cannot detect the code smell Message Chain. Fortunately
two other tools, Ptidej [5] and the Stench Blossom [6] can
successfully detect Message Chains.

Ptidej is a Java application run within the Eclipse IDE.
The Ptidej tool suite is integrates various Java packages to
provide a comprehensive analysis tool for object-oriented
systems. Ptidej creates a system model against which further
investigative procedures are run against. Ptidej can be set
up to measure the following Fowler smells: Data Class,

Large Class, Lazy Class, Long Method, Long Parameter List,
Message Chains, Refused Bequest, Speculative Generality.

Stench Blossom is an Eclipse plug-in which produces a
graphical indication of the presence of certain code smells
and their respective strength. The smells Stench Blossom
measures are Data Clumps, Feature Envy, Large Class, Large
Method, Message Chain, Switch Statement.

However, neither Ptidej nor Stench Blossom provides auto-
matic recommendation for refactoring smelly code, including
Message Chains. This study aims to alleviate this problem
by providing developers a way to refactor as well as detect
Message Chains.

IV. PROPOSED METHODOLOGY

The methodology consists of two parts – detecting Mes-
sage Chains and generating suggestions for refactoring those.
These are described in the following subsections.

A. Detection Process

As depicted in Algorithm 1, the Message Chain detection
process starts by extracting all the executable code from
.java files present in the project directory. After the exe-
cutable code has been loaded, information is extracted from
these and saved into custom data structures (Class, Method,
Variable and Potential Message Chain Information).

For each method, the executable code inside is checked
for potential Message Chains. These are detected using the
scope length of method call chains. Scope length (or degree)
is calculated using the number of elements in the scope part
of a chain. For example, in the chain presented below:

a.getB().getC().getD().runTask();

a.getB().getC().getD() is the scope part while runTask()
is the method call part. With four elements, the scope
length for this example is 4. If the scope part for a method
call contains two or more elements then the corresponding
statement is considered a potential Message Chain.

Potential Message Chains are then filtered based on
whether the first element present in the scope corresponds
to an instance of classes present in the project directory. In-
stances of third party library classes are disregarded. After a
potential Message Chain is confirmed, its degree is computed
and it is added to the list of final Message Chains detected.

As a limitation to this process, private classes are not
considered when filtering chains. Only the public Class of the
.java files are regarded when processing Message Chains.
Furthermore, temp instances are also not considered, and
only statements with long chains are included.

B. Refactoring Process

After detecting all the Message Chains, recommendations
of refactored code are generated for each of these. The target
result of refactoring Message Chains is to reduce the scope
part down to a single element. In order to achieve this,
new appropriate methods are proposed to be incorporated
in classes present along the scope chain. For instance-

Algorithm 1 Pseudo Code for Message Chain Detection

1: for each: method call executable do
2: if scope exists then
3: split scope into elements;
4: if arr[0] is project class object and slope

length≥2 then
5: classify as potential Message Chain;
6: for each: potential Message Chain do
7: parentMethod = Message Chain container method;
8: currentClass = parent method’s parentClass;
9: split scope into chainElements;

10: for each: chainElements do
11: if !lastElement then
12: nextClass = element type;
13: if !element inner method of currentClass

then
14: break;
15: new method name = extract name from remaining

element;
16: parent md’s md call = new md name;

//md=method
17: add new md with new md name of next class;
18: populate new md with remaining elements;
19: append currentClass text to rs; //rs = refactor

suggestion
20: if second to lastElement then
21: append next class text to rs;
22: if lastElement then
23: extract tail method return type;
24: propagate tail md return type to new md;

1 p u b l i c c l a s s A {
2 B b ;
3 p u b l i c vo id runA (S t r i n g a) {
4 b . getC (a) . getD () . runTask () ;
5 }
6 }
7

8 p u b l i c c l a s s B {
9 C c ;

10 p u b l i c vo id getC (S t r i n g a) {
11 r e t u r n c ;
12 }
13 }
14

15 p u b l i c c l a s s C {
16 D d ;
17 p u b l i c vo id getD () {
18 r e t u r n d ;
19 }
20 }
21

22 p u b l i c c l a s s D {
23 p u b l i c vo id runTask () {
24 / / some t a s k
25 }
26 }

Here a Message Chain is present inside the method
runA(). It needs the method in class D which is accessible
through classes C and B. This method chain can be simply
alleviated by making the following changes:

1 p u b l i c c l a s s A {
2 p u b l i c B b ;
3 p u b l i c vo id runA (S t r i n g a) {
4 b . cDRunTask () ;
5 }
6 }
7

8 p u b l i c c l a s s B {
9 p u b l i c vo id cDRunTask (S t r i n g a) {

10 getC (a) . dRunTask () ;
11 }
12 }
13

14 p u b l i c c l a s s C {
15 p u b l i c vo id dRunTask () {
16 getD () . runTask () ;
17 }
18 }

Instead of importing (“getting”) every instances (B, C and
D) needed for accessing the target method (runTask()), the
importing is delegated to those instances. Every instance will
be accessed only by its direct neighbor. To do so, a recursive
method is employed:

1) Add a new method (cDRunTask()) to the first in-
stance (B) of the chain. The method will contain the
original statement starting after the call of the current
instance – getC(a).dRunTask().

2) Replace the original call statement
(b.getC(a).getD().runTask()) with the newly
created method – b.cDRunTask().

3) Repeat steps 1 and 2 for all other scope instances
except for the last.

The recursion is conducted until the second to last instance
of the scope. The last instance (D), which contains the target
method (runTask()), remains unchanged.

This recursive process adds an intermediary method to the
scope instances. Each of these methods contains a call to only
its next instance. Hence, no method call statements exceed
the degree of 1.

The pre-existing getter methods are not changed or re-
placed, since these can contain their own business logic.
Rather these are reassigned in the intermediary methods.
Therefore, the parameters are also unchanged, as seen for
cDRunTask(String a).

The naming of the intermediary methods is done keeping
in mind that meta information may get lost in the process.
To avoid that, the class names of the scope instances precede
the name of the target method in the new method names.

V. EMPIRICAL ANALYSIS

To exemplify the applicability of the process of Message
Chain detection and understand its evolution in software
system, an empirical study is conducted. Two software
projects are empirically analyzed to observe how Message
Chains evolve with regards to the size of the projects.

A. Dataset Description

The dataset for the empirical study consists of two open
source software with their six major versions. These are
mature and easily available software that have adopted the
object-oriented paradigm. These two software are-

• Proguard: ProGuard1 is a free Java class file shrinker,
optimizer, obfuscator, and preverifier. Versions of this
application collected – proguard1.0, proguard2.0.1, pro-
guard3.0.7, proguard4.0, proguard5.0, proguard6.0.

• Incubator-dubbo-dubbo: Incubator-dubbo-dubbo2 is a
high-performance, Java based open source RPC (Re-
mote Procedure Call) framework. The versions used are
– dubbo2.0.7, dubbo2.0.10, dubbo2.4.10, dubbo2.4.11,
dubbo2.5.7, dubbo2.6.4.

Table I shows some metrics of different versions of
Proguard and Dubbo. It can be seen that the number of Lines
of Code (LOC) has increased significantly with the increase
of the versions. Moreover, the number of classes has also
increased while the cyclomatic complexity of methods and
methods per class have remained similar.

B. Findings

The correlation between project size and Message Chains
for the two projects is as follows.

1) Proguard: Fig 1 contains the evolutionary properties
of Message Chains in Proguard. Fig 1a shows the
increasing Message Chain of the Proguard software
with the increasing version throughout its lifespan. Fig
1b shows the maximum chain degree also increasing
in later versions with the last one having two times its
previous version. Fig 1c demonstrates the frequency
of Message Chains, showing how Message Chain per
KLOC also increase with the software’s growth. Fig
1d shows parallel rise of Message Chains and KLOC
over the software’s lifetime.

(a) (b)

(c) (d)

Fig. 1: Evolution of Message Chains in Proguard

2) Incubator-dubbo-dubbo: The evolution of Message
Chains in the Dubbo project is provided in Fig 2.
Fig 2a shows the increase of the total number of
Message Chains. A stark rise can be seen after version

1https://sourceforge.net/p/proguard/code/ci/default/tree/
2https://github.com/apache/incubator-dubbo/

TABLE I: Software metrics of different versions of projects ’Proguard’ and ’Dubbo’

Project Version LOC Comment Percentage Number of Class Average Cyclomatic
Complexiety Per Method

Average Weighted
Method Per Class

Proguard

1.0 8995 12.86% 117 1.71 8.62
2.0.1 17679 13.85% 234 1.69 7.32
3.0.7 26509 16.01% 294 1.72 15.88
4.0 47219 17.50% 492 1.82 14.78
5.0 67914 17.94% 664 1.78 15.14
6.0 87665 16.92% 796 1.73 9.88

Dubbo

2.0.7 43760 5.19% 589 1.85 7.65
2.0.10 50614 4.90% 661 1.88 7.59
2.4.10 89674 5.40% 1091 1.91 7.99
2.4.11 89678 5.40% 1091 1.91 7.99
2.5.7 108584 5.41% 1267 2.13 8.41
2.6.4 97481 4.39% 1295 1.7 7.77

2, but unlike Proguard, the smell remained level with
time. In terms of frequency, Fig 2c shows that the
project actually improved, reducing Message Chains
per KLOC, although not drastically. The last version,
as shown in Fig 2d decreased both in size and the
number of Message Chains. Lastly, in regards to the
maximum degree of Message Chain, it can be seen
from Fig 2b) that the initial version had a large chain
which was reduced in the following version. In later
versions, the degree increased but never too large.

(a) (b)

(c) (d)

Fig. 2: Evolution of Message Chains in Dubbo

C. Result Analysis

The number and degree of Message Chains can be helpful
in understanding the quality of a developed software. As
such, in the empirical study, the projects’ life cycles from
development inception to the latest stable releases are mon-
itored to understand the impact of change and expansion
on software code quality, using the number, frequency and
degree of Message Chains as indicators.

The findings show that the number of Message Chains
grows with size for both projects, signalling the increase

of coupled classes as the system evolve. For Proguard,
the increase of Message Chains are quite stark compared
to Dubbo, which indicate a lack of refactoring efforts for
this particular code smell. The project also shows a steady
increase in the maximum size of chains, which can be
interpreted as inter-class relations becoming more complex
with each consecutive versions.

In the case of Dubbo, Message Chains increase, but at a
slower and more stable pace than Proguard. While the total
number increases drastically after version 2, the frequency
(per KLOC) remains stable, albeit increased. On the other
hand, the sharp decline of maximum degree after version
1 indicates a dedicated refactoring effort or redesigning was
conducted at that interval. Nevertheless, the maximum degree
and presumably the complexity increase with the versions.

VI. CONCLUSION

In this paper, an approach to detect the Message Chain
smell and suggest its refactoring is proposed. An empirical
analysis is conducted using this approach to understand
the evolution of the smell. It is observed that the amount,
frequency and degree of Message Chains increase with the
growth of the software system. Future studies can explore
varying threshold values and empirically analyze the impact
of proposed refactoring method.

REFERENCES

[1] M. Fowler and K. Beck. Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[2] Zhang, M., Baddoo, N., Wernick, P., and Hall, T. (2008, October).
Improving the precision of fowler’s definitions of bad smells. In 2008
32nd Annual IEEE Software Engineering Workshop (pp. 161-166).
IEEE.

[3] M. Zhang, N. Baddoo, P. Wernick, and T. Hall. Prioritising refactoring
using code bad smells. In Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE International Conference on, pages
458 464, 2011.

[4] Moha, N., & Guhneuc, Y. (2010). DECOR: A method for the speci-
fication and detection of code and design smells, IEEE Transactions
On, 36(1), 2036. https://doi.org/10.1109/TSE.2009.50

[5] Tools Ptidej Team”, Ptidej.net, 2018. [Online]. Available:
http://www.ptidej.net/tools/. [Accessed: 03- Nov- 2018].

[6] E. Murphy-Hill and A. P. Black. An interactive ambient visualization
for code smells. In Proceedings of the 5th international symposium
on Software visualization, SOFTVIS 10, pages 514, New York, USA,
2010. ACM.

