
Impact of Label Noise and Efficacy of Noise Filters
in Software Defect Prediction

Shihab Shahriar Khan, Nishat Tasnim Niloy, Md. Aquib Azmain, Ahmedul Kabir
Institute of Information Technology

University of Dhaka
Dhaka, Bangladesh

(bsse0703,bsse0723,bsse0718,kabir)@iit.du.ac.bd

Abstract—A well-established fact in the domain of software
defect classification is that dataset labels collected using auto-
mated algorithms contain noise. Several prior studies examined
the impact of noise and proposed novel ways of dealing with
this issue. Those studies, however, relied on randomly simulated
artificial noise on clean datasets, but real-world noise is not
random. Using a recently proposed dataset with both clean labels
annotated by experts and noisy labels obtained by heuristics,
this paper revisits the question of how label noise impacts
the defect classification performance and demonstrate how the
answer varies among several types of classification algorithms.
Based on a diverse set of 9 different noise filters, this paper
empirically investigates their ability to improve the performance
of classifiers trained with label noise. Contrary to previous
findings, we observe that the noise filters mostly struggle to
improve performance over unfiltered noisy data. Lastly, we
conduct several small-scale experiments in a bid to explain our
findings and uncover actionable insights.

Index Terms—Defect prediction, Label Noise, Class Imbalance,
Noise detection

I. INTRODUCTION

Like any machine learning task, the quality of defect pre-
diction models depends highly on the quality of data used to
train them. Unfortunately, noise is pervasive in binary defect
prediction datasets, particularly label noise [1], [2]. Label noise
occurs when a defective artifact is labeled as non-defective,
or vice-versa. There are many possible sources of such noise:
mislabeling of issues [3], failure to link issues to relevant code
changes [4] or bias of human annotators [5].

Several studies suggest that the presence of mislabeled
samples can significantly impact the performance of defect
prediction models [1], [6]. Studying the impact of noise is
a tricky problem, however, as it requires access to a set of
samples that are known to be reliable. Evaluating the model
on noisy test data might provide an unreliable estimate of its
generalizability. A common approach is to first clean data [7],
[8] or to only choose datasets believed to be of high-quality
[5], [6], and then randomly introduce artificial noise only in the
training subset. But the label noise of defect prediction dataset
is not random, and random noise tends to overestimate noise’s
impact compared to naturally occurring noise [9].

According to [10], the gold standard for label noise research
is to use a dataset where both naturally occurring noisy labels,

DOI reference number: 10.18293/SEKE2020-126.

and their clean, reliable counterparts (produced for example
with the help of domain experts) are available. Recently, Yatish
el al. [11] presented such a defect prediction dataset, and
concluded, somewhat surprisingly, that the impact of realistic
noise on classifier performance is “modest”. To resolve this
apparent disparity between results from artificial and clean
noise, using the same dataset as [11], this paper revisits the
question of how noise impacts classifier performance. We
show that except for Naive Bayes, noise has a high impact on
most classifiers. Decision tree and random forest were found
to lose comparatively the most performance.

Another objective is to find out whether this loss of perfor-
mance can be mitigated by noise handling techniques. There
are several ways to handle dataset noise such as cost-sensitive
learning [12], robust classifiers [13] or noise filters. We restrict
ourselves to noise filter in this study, and most of the noise
handling approaches proposed in defect prediction literature
fall under this category. In this paper, 9 filters of diverse
properties are investigated to analyze how they individually
perform, and how classifiers react to them. To the best of our
knowledge, this is the first paper to empirically compare such
a broad array of filters in defect prediction setting.

The result of the application of filter is somewhat mixed.
On the one hand, across all classifiers and datasets, noise
filters barely improve performance over unfiltered noisy labels.
On the other hand, from a classifier standpoint, performance
improves quite significantly when best filter performance is
considered. The takeaway is that while filtering can improve
performance, it crucially depends on the right combination of
classifier and filter.

Our final objective is to explain our findings and extract
actionable insights from them. We conduct several small-scale
experiments to that end. These revealed that the noise model
we study is far more challenging than artificially introduced
random noise, which may explain the observed big impact
of noise on classifiers. They also reveal how traditional ap-
proaches to fight the natural imbalance of defect datasets is
particularly inadequate in the high-level noisy setting that we
study.

II. STUDY DESIGN

The scope of this paper is limited to the “within-project”
post-release defect prediction scenario, and the main focus

here is on prediction, not interpretation. Throughout the paper,
the noise level (NL) of a dataset refers to the percentage
of its total samples that are mislabeled. Imbalance ratio (IR)
refers to the ratio of the number of samples in the majority
(non-defective) class to the number of samples in minority
(defective) class for clean labels, nIR does the same but
for noisy labels. The term “model” refers to an instance of
the combination of classifier, imbalance-method and filters
used. P→N denotes fraction of originally positive (defective)
samples that have been flipped to negative (non-defective) in
heuristic-based labeling, and N→P denotes the opposite.

All mentions of averages in this study are actually trimmed
mean, calculated after trimming away 5% of extreme val-
ues from each side. Wilcoxon signed-rank test [14] is used
to test statistical significance, with the p-value set to .01.
Benjamini-Hochberg procedure is used to correct for multiple
comparisons. To compute the effect size, Hedges’ g [15] is
used with an interpretation of values according to [16], that is
|g| < 0.2 “negligible”, |g| < 0.5 “small”, |g| < 0.8 “medium”,
otherwise “large”

A. Dataset Description:

This paper uses 32 datasets from 9 open-source software
systems presented in [11]. To identify defects introduced
by a release, traditionally used heuristic methods rely on
strong assumptions like “all bugs reported after release X is
introduced in release X” or that “all defect-fixing commits
that affect the release X occur within (say) 6 months after it’s
release”, etc. Furthermore, to link a bug report to a defect-
fixing commit, they assume that the logs of all bug-fixing
commits contain a specific set of keywords (e.g. Bugs, Fix
etc.) along with relevant issue ID.

In contrast, datasets used here are all collected from JIRA
issue tracker, which allows developers of a software to define
what releases were affected by a given bug, earliest of which
can be assumed to be the one that introduced it. This makes
the produced defective/non-defective labels comparatively far
more reliable. For the 32 datasets studied here, summary
statistics for their key characteristics is presented in Table
1. #ND and #defective denote number of non-defective and
defective samples respectively in clean labels.

TABLE I: Summary statistics of key dataset characteristics

Dataset
Property Min Median Max

Size 731 1717 8846
NL(%) 2.35 13.32 28.99

IR 1.97 8.24 45.07
nIR 3.09 12.65 56.87

#defective 26 197 669
#ND 609 1455 8654

P→N(%) 19.23 63.27 93.43
N→P(%) 1.05 4.12 20.97

B. Classifiers

For subsequent experiments, 6 classifiers have been used:
Decision Tree (DT), K Nearest Neighbor (KNN), Naive Bayes

(NB), Logistic Regression (LR), Support Vector Machine
(SVM) and Random Forest (RF). Each of these classifiers has
been combined with 5 data balancing techniques: Wilson’s
editing (ENN), Random Under-Sampling (RUS), SMOTE,
Tomek Links (TOMEK) and None (representing no sampling),
totaling 6∗5 = 30 models. Two bagging classifiers using Naive
Bayes and Decision Tree are also used as base learners, both of
which apply RUS independently at each base learner (BagNB
and BagDT). This brings the total number of models studied
to 32.

C. Noise Filters

All the 9 noise filters operate under the assumption that mis-
labeled instances are harder to predict than clean ones. These
methods can be roughly divided into two groups. The first
group, ensemble-based methods, assume a mislabeled training
instance will be frequently misclassified by a committee of
classifiers. Iterative Partitioning Filter (IPF) [17], Random
Forest Filter (IHF) [18] and Instance Hardness Threshold
(IHT) [19] belong to this group. IPF partitions the training
data into n subsets to train a decision tree on each, and all n
classifiers are used to predict the label of each instance (and
thereby detect mislabeling) in the training set. RFF takes a
cross-validation approach- it uses n − 1 subsets of training
data to train a random forest classifier, and uses its base trees
to predict on remaining subset. IHT differs from IHF only in
that it down-samples the majority class, leaving minority class
untouched.

The second group uses an instance’s nearest neighbors to
predict its label. This group includes Neighborhood Cleaning
Rule (NCL) [20], SPIDER2 [21], Edited Nearest Neighbor
(ENN) [22], SMOTE ENN [23] and SMOTE IPF [24] and
Closest List Noise Identification (CLNI) [6]. CLNI finds for
each instance the percentage of its K nearest neighbors that
have different class values, instances for which this percent-
age cross a certain threshold are removed and repeats this
procedure unless some stopping criterion is met. For space
consideration, the discussion about the rest of the filters is
omitted.

Six of these filters belong to the family of focused
imbalance-methods- noise identification and removal are in-
tegrated into them. Since the noise detectors have a tendency
to overestimate the noise likelihood of minority class [25],
for the rest 3 types- IPF, CLNI and RFF, this paper relies on
the previously discussed imbalance-methods to balance dataset
before applying filtering. All these filters are compared against
the baseline “NoF”, meaning no filtering.

D. Evaluation:

Following the guidelines of [26], our primary choice for
a model’s performance evaluation is Matthews Correlation
Coefficient (MCC). For a given confusion matrix, MCC is
defined as:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Since this is threshold-dependent, the area under the
Precision-Recall curve (APRC) is also used to complement
MCC, but we note its performance only when APRC result
diverges significantly from MCC. APRC is used over the
more popular alternative area under the receiver operating
characteristic curve (roc-auc) following the recommendation
of [27].

In all of the following experiments, only clean labels are
used for evaluation. 5-fold cross-validation has been repeated
5 times for measuring all reported performance values. The
experiments are conducted with the help of scikit-learn [28]
and imbalanced-learn [29] libraries. For all classifiers, the
default hyper-parameter values provided in these libraries are
used. The dataset and source code of this study can be found
online 1.

III. RESULTS & DISCUSSION

A. How does the presence of label noise impact bug detection?

Figure 1 shows how the performance of examined classifiers
compare between clean and noisy labels. As expected, all
classifiers fare worse when noise is included. But some, for
example, decision tree (DT), reacts quite poorly to noise. This
is expected since unpruned decision trees are known to easily
overfit [30]. But performance loss of random forest (RF) was
somewhat surprising as it has been frequently found to be
noise resistant in previous studies [31], [32]. On the opposite
spectrum is Naive Bayes and its balanced bagging version
BagNB. In fact, as Table II shows, these are the only two
classifiers where label noise seems to have had a small effect
in terms of MCC. Among others, only SVM has a medium
effect, all else are highly impacted by noise. The impact
is comparatively less severe for APRC, which is expected
since it’s threshold-independent. But overall, the impact is
statistically significant for all of the results in Table II except
one. This result contradicts [2] or is slightly at odds with [11]
previous studies, which reported noisy labels having an only
modest effect on classifiers.

This performance of Naive Bayes under noise is consistent
with previous studies [33] that demonstrated Naive Bayes’
superiority in the defect classification task. This is slightly at
odds with the findings from general-purpose (i.e. not domain-
specific) datasets like the ones from UCI [34], where random
Forest, SVM or Boosting approaches perform well. As noise
label is pretty ubiquitous in bug prediction datasets used in
those studies [7], [8], this finding suggests that Naive Bayes’
particular success in defect classification domain may have
been primarily due to its unique robustness in the face of label
noise.

To summarize:
• The impact of label noise is statistically significant for

all classifiers, and the impact is quite large for most.
• Random forest and similar balanced bagging with deci-

sion tree perform best when trained with clean labels.

1https://figshare.com/s/372afb62060475b91e9e

DT LR NB SVM KNN RF BagNB BagDT
Classifier

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
C
C

Labels
Clean
Noisy

Fig. 1: Comparison of performances of classifiers trained with
clean and noisy labels

• NB and bagging with NB are two of the best performing
classifiers with noisy labels, particularly owing to NB’s
surprisingly good inherent robustness to noise.

Discussion: Why is the impact of noise high? One obvious
explanation is that the amount of noise in studied datasets
is comparatively high compared to previous studies. All of
the filters that we studied were tested with the assumption
that noise level will not cross 50%. Even many theoretical
guarantees we have about learning from corrupted labels is
grounded on the same assumption [12], [35]. But as Table I
shows, at least for defective class, this assumption does not
hold. In 23/32 datasets, noise level in defective class (P→N)
is higher than that 50% mark. While overall noise level is
well below 50% for all the datasets, several prior studies show
using artificial noise that the P→N noise is relatively far more
harmful than N→P.

We demonstrate this in a slightly different way: we start
with clean labels, for each class we select the samples that
are mislabeled by heuristic method, and then flip a certain
percentage of them, while keeping the labels of other class

TABLE II: Effect of label noise on classifier performance.
“Delta” denotes average loss of performance across all datasets
and imbalance methods. Results that are NOT statistically
significant are marked with *

MCC APRC
Classifier Delta Effect Interpret. Delta Effect Interpret.

DT .116 1.312 Large 0.082 0.611 Medium
LR .103 1.003 Large 0.079 0.515 Medium
NB .022 0.277 Small 0.013 0.125 Neglig.

SVM .081 0.755 Medium 0.089 0.551 Medium
KNN .097 1.000 Large 0.086 0.607 Medium
RF .141 1.224 Large 0.118 0.760 Medium

BagNB .021 0.268 Small 0.011* 0.087 Neglig.
BagDT .097 0.962 Large 0.097 0.586 Medium

https://figshare.com/s/372afb62060475b91e9e

constant. We then compute how this two types of intention-
ally introduced noise degrades performance w.r.t clean data,
aggregated over all datasets and models.

0.00 0.25 0.50 0.75 1.00
Noise Level

0.03

0.02

0.01

0.00

0.01

0.02

dA
PR

C

NP
PN

(a) Impact of each noise type on APRC

0.00 0.25 0.50 0.75 1.00
Noise Level

0.05

0.04

0.03

0.02

0.01

0.00

0.01

dM
C

C

NP
PN

(b) Impact of each noise type on MCC

Fig. 2: Impact of P→N vs N→P noise

As Figure 2 shows, performance decreases much more
rapidly with P→N noise than N→P. This implies where noise
occurs is more important than overall noise level, and that’s
why these datasets pose a very difficult task for any learner.

B. How much can noise filters recover performance?

As previously mentioned, 9 noise filters are applied to the
training dataset. Figure 3 boxplot shows how much each of
them improves performance over unfiltered noisy labels, i.e
the difference in MCC and APRC, across 32 models and 32
datasets.

CLNI NCL ENN IHF SM_ENC IHT SM_IPF SPIDER2 IPF
Filter

0.2

0.1

0.0

0.1

0.2

0.3

D
el

ta

Metric
dMCC
dAPRC

Fig. 3: Performance improvement by noise filters on noisy
labels across all models and datasets w.r.t baseline no-filering
(NoF)

One salient finding is that the median for most of the filters
lies pretty close to zero, a value that indicates no improvement
over non-filtered data. In fact, the boxes quite often go below
the zero mark, these are the cases where filtering actually
decreased performance. Some outliers go even below the range
presented in the figure.

As both Figure 3 and Table III show, the results vary slightly
among the evaluation metrics. Among all the filters, classifiers
and datasets, APRC performance on average is improved by
.0203, for MCC this value is 0.0012. With MCC, only 2
out of 9 filters, NCL and SMOTE IPF, bring statistically
significant improvement. With APRC, this is true for all except
SPIDER2. But irrespective of evaluation metric, the effect of

performance improvement remains small even for the best
performing filters.

DT LR NB SVM KNN RF BagNB BagDT
Classifier

0.00

0.05

0.10

0.15

0.20

0.25

Va
lue

Metric
dMCC
dAPRC

Fig. 4: Performance improvement of each classifier using the
best filter for that classifier

In Figure 4, for each classifier, we plot the improvement
brought by the best among all 9 filters for that classifier.
This represents an upper bound on how much a classifier
can recover performance from the application of filtering. The
figure reveals that KNN and DT classifiers can benefit most
from noise filters. Using only the best value among filters,
performance improvement across all models and datasets on
average is .057 for MCC and .077 for APRC. This implies
filtering can positively impact performance, as long as right
classifier-filter combination is used.

Discussion: So, Why do filters struggle to improve perfor-
mance? Apart from high noise in defective class discussed
before, we believe a big part of this answer lies in the
fact that these datasets are highly class-imbalanced. Next, we
consider 3 of the most common ways to address imbalance
in turn: no sampling, under-sampling and over-sampling, and
provide preliminary evidence to demonstrate why they might
be inadequate for the datasets at hand.

1) No Sampling: We begin with the baseline where we do
not do anything to address class imbalance. [26] suggests that
class balancing is important for moderate or highly imbalanced
datasets, where moderate imbalance was defined as having

TABLE III: Performance improvement for each noise filter
across all datasets and models. Statistically significant im-
provements are marked with *.

MCC APRC
Filter Delta Effect Interpr. Delta Effect Interpr.

SM IPF 0.0237* 0.275 Small 0.0359* 0.274 Small
SPIDER2 -0.0080 -0.121 Neglig. -0.0046 -0.04 Neglig.

IHF 0.0001 -0.061 Neglig. 0.0188* 0.138 Neglig.
NCL 0.0163* 0.156 Neglig. 0.0172* 0.127 Neglig.
ENN -0.0042 -0.079 Neglig. 0.0057* 0.045 Neglig.
IHT -0.0066 -0.079 Neglig. 0.0496* 0.356 Small

CLNI -0.0031 -0.099 Neglig. 0.0159* 0.119 Neglig.
IPF -0.0116 -0.130 Neglig. 0.0264* 0.205 Small

SM ENC 0.0041 0.038 Neglig. 0.0175* 0.119 Neglig.

���� ��
����������� �������������

���

���

���

���

���

���

���

	
	

Fig. 5: Comparison of 3 approaches to data balancing accross
all datasets and models. under-sampling includes ENN and
RUS, over-sampling only includes SMOTE.

IR> 3.94. Using the same threshold, 27 out of 32 datasets
we use is moderately or highly imbalanced, suggesting this
option might not be optimal. We illustrate this using IPF, one
of the filters which does not have data balancing baked in.
As Figure 5 shows, both of the alternatives clearly outperform
no-sampling.

2) Under-Sampling: These techniques remove samples
only from majority class, unless a desired level of balance with
minority class is reached. One problem with these approaches
is that when imbalance is high, this means throwing out a big
portion of dataset. For example, given our median nIR=12.65,
under-samplers will have to throw out 85.4% of overall data
to create perfect balance.

Some techniques try to minimize the impact of data loss
by filtering out uninformative or noisy samples. In fact, 3
of our 9 filters: IHT, NCL and ENN, belong to this group.
As we’ll show, even when they work exactly as intended
i.e. even in the best case scenario, they still struggle to
noticeably improve performance over simple random under-
sampling. To test this, we first removed each mislabeled
sample from majority class of training set, and then kept
randomly removing samples until class balance is achieved.
While the improvement (across all datasets and models) over
random under-sampling is statistically significant, effect size
reveals that the improvement is “negligible” for both MCC
and APRC (.155 and .129 respectively).

3) Over-Sampling: As a representative of this family of
samplers, we choose perhaps the most widely used data
balancing technique: SMOTE [36]. In short, SMOTE randomly
selects one of the minority (defective) samples and one of
it’s nearest neighbors, then samples a random point from the
line connecting those two samples in feature space. This new
sample naturally gets labeled defective. Therefore, quality of
labels of new samples depends crucially on the quality of
existing minority samples’ labels.

Unfortunately, majority of the samples labeled as defective

are actually non-defective due to noise. While the ratio of
N→P noise as shown in Table I is comparatively small, even
that small noise level can overwhelm minority class due to
high imbalance. For example, in a dataset with nIR=12.65,
P→N=63.27% and N→P=4.12% (all are median values taken
from Table I), only 41.3% of samples labeled as defective will
actually be defective. This in turn means that only 17% of
SMOTE-generated defective samples is expected to originate
from a pair of defective samples, whereas for around 34%
samples both of their parents will actually be non-defective.
About half (∼ 49%) will originate from one clean and one
mislabeled sample. Using PCA transformation, we illustrate
this idea with JRuby-1.5.0 dataset in Figure 6.

clean
noise

(a) Original defective samples

noise
hybrid
clean

(b) Samples generated by SMOTE

Fig. 6: Distribution of mislabeled and clean samples in defec-
tive class. Explained variance for the figures is 57% and 59%
respectively.

IV. THREATS TO VALIDITY

Our study crucially depends on the assumption that the
labels we assume to be clean are actually clean. One issue is
that these labels are human-annotated. While this makes the
so-called clean labels far more reliable than their heuristics-
based counterparts, they are still susceptible to human error,
due to phenomenons like snoring [37] or annotator bias [5]
for example.

Also, a few prominent classifiers like Neural Network or
XGBoost [38] are excluded in this study, mainly due to
their computationally extensive training procedures. Similar
consideration also led us to skip extensive hyper-parameter
tuning, something that can impact a classifier’s performance
[39]. We note however, that any such optimization would have
to be carried out on a subset of noisy training data, and this
can lead to poor choice of hyper-parameter values [40].

V. CONCLUSION AND FUTURE WORK

By using a diverse set of classifiers, imbalance-methods and
noise filters, this study empirically investigates how the pres-
ence of label noise in post-release defect prediction datasets
affect performance and evaluates the effectiveness of noise
filters in minimizing the adverse effects of noise. The principal
conclusions of this study are (1) Label noise in bug prediction
datasets do have large impact on most classifier’s performance,
(2) Noise filtering isn’t guaranteed to improve performance,
but with the right choice of classifier-filter combination, it
can yield significant improvement especially for classifiers

that easily overfit, e.g., decision tree. This study also revealed
the highly robust nature of the Naive Bayes algorithm, the
surprising brittleness of Random Forest and took the first steps
towards explaining these findings.

For future work, we plan to investigate several alternatives
to filtering for noise handling. The relatively higher cost of
P→N noise suggests while designing any auto defect-labeling
algorithm, recall of defect class should be prioritized over
precision. We also plan to explore this idea in future.

REFERENCES

[1] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,
and P. Devanbu, “Fair and balanced?” in Proceedings of the 7th joint
meeting of the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software engineering on
European software engineering conference and foundations of software
engineering symposium - ESEC/FSE '09. ACM Press, 2009. [Online].
Available: https://doi.org/10.1145/1595696.1595716

[2] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in Proceedings of the 2013
international conference on software engineering. IEEE Press, 2013,
pp. 392–401.

[3] J. Aranda and G. Venolia, “The secret life of bugs: Going past the
errors and omissions in software repositories,” in Proceedings of the
31st international conference on software engineering. IEEE Computer
Society, 2009, pp. 298–308.

[4] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein,
“The missing links: bugs and bug-fix commits,” in Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2010, pp. 97–106.

[5] F. Rahman, D. Posnett, I. Herraiz, and P. Devanbu, “Sample size vs.
bias in defect prediction,” in Proceedings of the 2013 9th joint meeting
on foundations of software engineering. ACM, 2013, pp. 147–157.

[6] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in 2011 33rd International Conference on Software
Engineering (ICSE). IEEE, 2011, pp. 481–490.

[7] J. Van Hulse, T. M. Khoshgoftaar, and A. Napolitano, “Skewed class
distributions and mislabeled examples,” in Seventh IEEE International
Conference on Data Mining Workshops (ICDMW 2007). IEEE, 2007,
pp. 477–482.

[8] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Folleco, “An
empirical study of the classification performance of learners on imbal-
anced and noisy software quality data,” Information Sciences, vol. 259,
pp. 571–595, 2014.

[9] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. Mat-
sumoto, “The impact of mislabelling on the performance and inter-
pretation of defect prediction models,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1. IEEE, 2015,
pp. 812–823.

[10] B. Frénay and M. Verleysen, “Classification in the presence of label
noise: a survey,” IEEE transactions on neural networks and learning
systems, vol. 25, no. 5, pp. 845–869, 2013.

[11] S. Yatish, J. Jiarpakdee, P. Thongtanunam, and C. Tantithamthavorn,
“Mining software defects: should we consider affected releases?” in Pro-
ceedings of the 41st International Conference on Software Engineering.
IEEE Press, 2019, pp. 654–665.

[12] N. Natarajan, I. S. Dhillon, P. Ravikumar, and A. Tewari, “Cost-sensitive
learning with noisy labels.” Journal of Machine Learning Research,
vol. 18, pp. 155–1, 2017.

[13] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Machine learning, vol. 40, no. 2, pp. 139–157, 2000.

[14] R. Woolson, “Wilcoxon signed-rank test,” Wiley encyclopedia of clinical
trials, pp. 1–3, 2007.

[15] L. V. Hedges and I. Olkin, Statistical methods for meta-analysis.
Academic press, 2014.

[16] J. Cohen, “A power primer.” Psychological bulletin, vol. 112, no. 1, p.
155, 1992.

[17] T. M. Khoshgoftaar and P. Rebours, “Improving software quality pre-
diction by noise filtering techniques,” Journal of Computer Science and
Technology, vol. 22, no. 3, pp. 387–396, 2007.

[18] M. Sabzevari, G. Martı́nez-Muñoz, and A. Suárez, “A two-stage ensem-
ble method for the detection of class-label noise,” Neurocomputing, vol.
275, pp. 2374–2383, 2018.

[19] M. R. Smith, T. Martinez, and C. Giraud-Carrier, “An instance level
analysis of data complexity,” Machine learning, vol. 95, no. 2, pp. 225–
256, 2014.

[20] J. Laurikkala, “Improving identification of difficult small classes by
balancing class distribution,” in Conference on Artificial Intelligence in
Medicine in Europe. Springer, 2001, pp. 63–66.

[21] K. Napierała, J. Stefanowski, and S. Wilk, “Learning from imbalanced
data in presence of noisy and borderline examples,” in International
Conference on Rough Sets and Current Trends in Computing. Springer,
2010, pp. 158–167.

[22] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using
edited data,” IEEE Transactions on Systems, Man, and Cybernetics,
no. 3, pp. 408–421, 1972.

[23] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior
of several methods for balancing machine learning training data,” ACM
SIGKDD explorations newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[24] J. A. Sáez, J. Luengo, J. Stefanowski, and F. Herrera, “Smote–ipf:
Addressing the noisy and borderline examples problem in imbalanced
classification by a re-sampling method with filtering,” Information
Sciences, vol. 291, pp. 184–203, 2015.

[25] J. Van Hulse and T. Khoshgoftaar, “Knowledge discovery from imbal-
anced and noisy data,” Data & Knowledge Engineering, vol. 68, no. 12,
pp. 1513–1542, 2009.

[26] Q. Song, Y. Guo, and M. Shepperd, “A comprehensive investigation of
the role of imbalanced learning for software defect prediction,” IEEE
Transactions on Software Engineering, 2018.

[27] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the roc plot when evaluating binary classifiers on imbalanced
datasets,” PloS one, vol. 10, no. 3, p. e0118432, 2015.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[29] G. Lemaı̂tre, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine
learning,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 559–563, 2017.

[30] M. Bramer, “Using j-pruning to reduce overfitting in classification trees,”
in Research and Development in Intelligent Systems XVIII. Springer,
2002, pp. 25–38.

[31] T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Comparing
boosting and bagging techniques with noisy and imbalanced data,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 41, no. 3, pp. 552–568, 2010.

[32] C. Pelletier, S. Valero, J. Inglada, N. Champion, C. Marais Sicre,
and G. Dedieu, “Effect of training class label noise on classification
performances for land cover mapping with satellite image time series,”
Remote Sensing, vol. 9, no. 2, p. 173, 2017.

[33] S. Wang and X. Yao, “Using class imbalance learning for software defect
prediction,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–
443, 2013.

[34] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
[35] N. Manwani and P. Sastry, “Noise tolerance under risk minimization,”

IEEE transactions on cybernetics, vol. 43, no. 3, pp. 1146–1151, 2013.
[36] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:

synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[37] A. Ahluwalia, D. Falessi, and M. Di Penta, “Snoring: a noise in defect
prediction datasets,” in Proceedings of the 16th International Conference
on Mining Software Repositories. IEEE Press, 2019, pp. 63–67.

[38] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. ACM, 2016, pp. 785–794.

[39] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“The impact of automated parameter optimization on defect prediction
models,” IEEE Transactions on Software Engineering, vol. 45, no. 7,
pp. 683–711, 2018.

[40] D. I. Inouye, P. Ravikumar, P. Das, and A. Dutta, “Hyperparameter
selection under localized label noise via corrupt validation,” in NIPS
Workshop, 2017.

https://doi.org/10.1145/1595696.1595716

	Introduction
	Study Design
	Dataset Description:
	Classifiers
	Noise Filters
	Evaluation:

	Results & Discussion
	How does the presence of label noise impact bug detection?
	How much can noise filters recover performance?
	No Sampling
	Under-Sampling
	Over-Sampling

	Threats to validity
	Conclusion and Future Work
	References

