
 

Md. Aquib Azmain 
INSTITUTE OF INFORMATION TECHNOLOGY 

UIAnalyzer 
A WEB BASED UI SMELL FINDER TOOL FOR WEB APPLICATION 

 

  



ii | P a g e  
 

A web based UI smell finder tool for web 

application  

Final Report of the Project 

 

 

Submitted by 

Md. Aquib Azmain 

 BSSE 0718 

BSSE Session: 2014-2015 

 

 

 

Supervised by 

Md. Saeed Siddik 

Lecturer 

Institute of Information Technology 

University of Dhaka 

 

 

 
 

 

 

 

Institute of Information Technology 
University of Dhaka 

 
25-11-2018



iii | P a g e  
 

LETTER OF TRANSMITTAL 

 

25th November 2018 

The Coordinator 

Software Project Lab 3 

Institute of Information Technology 

University of Dhaka  

 

Subject: Submission of final report of Software Project Lab 3.  

 

Dear Sir,  

With due respect, I am pleased to submit the report on UIAnalyzer, A web based UI smell finder 

tool for web application. Although this report may have shortcomings, I have tried my level best 

to produce an acceptable report. This documentation includes Software Requirement 

Specifications, Design, Test plan for implementing the tool as well as a user manual for the users 

of it. I would be highly obliged if you overlooked the mistakes and accepted the effort that has 

been put in this report. 

 

Sincerely yours, 

 

 
Md. Aquib Azmain  

Roll: BSSE 0718 
BSSE 7th batch  
Institute of Information Technology  
University of Dhaka 
  



iv | P a g e  
 

DOCUMENT AUTHENTICATION 

 
 

This project document has been approved by the following persons. 
 
 
 
 
 
 
Prepared by,       Approved by,  
 
 
 
--------------------------------        -------------------------------    
Md. Aquib Azmain      Md. Saeed Siddik 
BSSE-0718       Lecturer 
Institute of Information Technology     Institute of Information Technology  
University of Dhaka       University of Dhaka 



v | P a g e  
 

LETTER OF ENDORSEMENT 

 

 

Subject: Approval of the Report 

 

This letter is to certify that, Md. Aquib Azmain, BSSE0718, student of Institute of Information 

Technology, University of Dhaka, has done the project “UIAnalyzer” under my supervision. I have 

gone through the report. All the information mentioned in this document is true. 

I wish him all the best and hope that he will lead a successful career. 

 

 

 

Md. Saeed Siddik 

Lecturer 

Institute of Information Technology 

University of Dhaka  



vi | P a g e  
 

 

ACKNOWLEDGMENT 

At first, I would like to thank almighty for helping to complete the project ’UIAnalyzer’.  

I would like to express my deepest gratitude to all those who provided me the support and 

encouragement to start this project. Thanks to my supervisor Md. Saeed Siddik, Lecturer, 

Institute of Information Technology, University of Dhaka, whose continuous suggestions and 

guidance has been invaluable to me.  

I am grateful to the Institute of Information Technology for giving me the opportunity to conduct 

such a project. 

Lastly, I would like to thank my classmates. They have always been helpful and provided valuable 

insights from time to time. 

  



vii | P a g e  
 

ABSTRACT 

The project ‘UIAnalyzer’ is about building a software that wil analyze the user interface of a web 

application. Usability assessment of web applications continues to be an expensive and often 

neglected practice. While large companies are able to spare resources for studying and improving 

usability in their products, smaller businesses often divert theirs in other aspects. This software 

finds the usibility smells from user interface of the application. This is be a web based tool that 

works with web application. The automated strategy to usability smell identification is based on 

a process consisting of three steps: Events Logging (Records each events by parsing html 

elements and web crawling), Usability Smells Detection (Five usability smell can be found using 

this tool), and Reporting (Shows result in CSV files).  After the inserting the website URL, 

UIAnalyzer can analysis a website, find specific usability smells without any human interaction. 

  



viii | P a g e  
 

Table of Contents 

1 Introduction .................................................................................................................................................. 1 

2 Scope of the project ..................................................................................................................................... 1 

3 Project Description ....................................................................................................................................... 2 

3.1 Specific Requirements .......................................................................................................................... 2 

3.1.1 Functionality ................................................................................................................................ 2 

3.1.2 Usability ....................................................................................................................................... 2 

3.1.3 Performance ................................................................................................................................ 2 

3.1.4 Web Based Requirements ........................................................................................................... 2 

3.2 Usage scenario of UIAnalyzer ............................................................................................................... 3 

3.2.1 Events logging .............................................................................................................................. 3 

3.2.2 Smell Detection ............................................................................................................................ 4 

3.2.3 Reporting ..................................................................................................................................... 5 

4 Scenario-Based Modeling ............................................................................................................................. 6 

4.1 Use-case Diagram ................................................................................................................................. 6 

4.2 Activity Diagram ................................................................................................................................... 8 

5 Class-Based Modeling ................................................................................................................................... 9 

5.1 Final Classes ......................................................................................................................................... 9 

5.2 Class Diagram ..................................................................................................................................... 11 

6 Architectural Design ................................................................................................................................... 12 

6.1 Overview ............................................................................................................................................ 12 

6.2 Instantiations of the System .............................................................................................................. 13 

6.3 Elaborated Deployment ..................................................................................................................... 13 

7 User Interface Design ................................................................................................................................. 14 

8 Implementation Overview .......................................................................................................................... 18 

8.1 Technology Used in implementation ................................................................................................. 18 

8.1.1 Client-side Technology ............................................................................................................... 18 



ix | P a g e  
 

8.1.2 Server-side Technology .............................................................................................................. 19 

8.1.3 Implementation Tools ................................................................................................................ 20 

8.2 System Configuration ......................................................................................................................... 21 

8.2.1 Server Requirements ................................................................................................................. 21 

8.2.2 Supported Browsers .................................................................................................................. 21 

8.3 Source Code Description .................................................................................................................... 22 

8.3.1 WebExplorer class ...................................................................................................................... 22 

8.3.2 EventPreprocessor class ............................................................................................................ 23 

8.3.3 SmellIdentifier class ................................................................................................................... 23 

8.3.4 ReportGenerator class ............................................................................................................... 24 

8.3.5 CSVGenerator class .................................................................................................................... 25 

8.3.6 ToolManager class ..................................................................................................................... 25 

9 Test Plan, Test Cases and Automated Testing ............................................................................................ 26 

9.1 Test Item to be tested ........................................................................................................................ 26 

9.2 Features to be tested ......................................................................................................................... 26 

9.3 Features not to be tested ................................................................................................................... 26 

9.4 Approach ............................................................................................................................................ 26 

9.5 Item Pass Fail Criteria ......................................................................................................................... 26 

9.6 Test Deliverables ................................................................................................................................ 26 

9.7 Testing Tasks ...................................................................................................................................... 27 

9.8 Testing cost ........................................................................................................................................ 27 

9.9 Test design specification .................................................................................................................... 27 

9.10 Test case specifications ...................................................................................................................... 28 

9.11 Test case execution using Selenium ................................................................................................... 29 

10 User Manual ........................................................................................................................................... 32 

11 Conclusion .............................................................................................................................................. 41 

 



x | P a g e  
 

List of figures 

Figure 1: The three steps of the UIAnalyzer System ..................................................................................... 4 

Figure 2: Level-0 Usecase Diagram ............................................................................................................... 6 

Figure 3: Level-1 Usecase Diagram ............................................................................................................... 6 

Figure 4: Activity Diagram of Whole System ................................................................................................ 8 

Figure 5: Class Diagram of UIAnalyzer ........................................................................................................ 11 

Figure 6: 2-tier architecture of UIAnalyzer ................................................................................................. 12 

Figure 7: Archetectural overview of UIAnalyzer ......................................................................................... 12 

Figure 8: Instantiations of UIAnalyzer ......................................................................................................... 13 

Figure 9: Elaborated Deployment of UIAnalyzer ........................................................................................ 13 

Figure 10: Home page of UIAnalyzer .......................................................................................................... 14 

Figure 11: Application Under Analysis View ............................................................................................... 15 

Figure 12: Smell Specific View .................................................................................................................... 16 

Figure 13: Summary Report View ............................................................................................................... 17 

Figure 14: Level-1 Usecase Diagram ........................................................................................................... 27 

Figure 15: Selenium test case 1 and output ............................................................................................... 30 

Figure 16: Selenium test case 2 and output ............................................................................................... 31 

Figure 17: Selenium test case 3 .................................................................................................................. 31 

Figure 18: Enter url of UIAnalyzer ............................................................................................................... 33 

Figure 19: Homepage of UIAnalyzer ........................................................................................................... 33 

Figure 20: Error page .................................................................................................................................. 34 

Figure 21: Analysis result ............................................................................................................................ 34 

Figure 22: 5 sections of the analysis page .................................................................................................. 35 

Figure 23: Overall analysis view .................................................................................................................. 36 

Figure 24: Smell Summary View ................................................................................................................. 37 

Figure 25: No link, Broken link report ......................................................................................................... 38 

Figure 26: Flash scrolling report .................................................................................................................. 38 

Figure 27: Smell meter view ....................................................................................................................... 39 

Figure 28: Screenshot view ......................................................................................................................... 39 

Figure 29: List of pages view ....................................................................................................................... 40 



xi | P a g e  
 

List of Tables 

Table 1: Usability Smells [1] .......................................................................................................................... 3 

Table 2: Class card of WebExplorer Class ..................................................................................................... 9 

Table 3: Class card of EventProcessor class .................................................................................................. 9 

Table 4: Class card of SmellIdentifier class ................................................................................................. 10 

Table 5: Class card of ReportGenerator Class ............................................................................................. 10 

Table 6: Class card of CSVGenerator Class .................................................................................................. 10 

Table 7: Class card of ToolManager Class ................................................................................................... 10 

Table 8: Server Requirements for UI Analyzer ............................................................................................ 21 

Table 9: Supported Browsers for different OS ............................................................................................ 21 

Table 10: Function description of WebExplorer class ................................................................................. 22 

Table 11: Function description of EventPreprocessor class ....................................................................... 23 

Table 12: Function description of SmellIdentifier class .............................................................................. 24 

Table 13: Function description of ReportGenerator class .......................................................................... 24 

Table 14: Function description of CSVGenerator class ............................................................................... 25 

Table 15: Function description of ToolManager class ................................................................................ 25 

Table 16: Test specifications of T1 .............................................................................................................. 28 

Table 17: Test specifications of T2 .............................................................................................................. 28 

Table 18: Table 8: Test specifications of T2 ................................................................................................ 29 



1 | P a g e  
 
 

 

1 Introduction 

Web applications help us in many of our daily life activities, like shopping, news reading, social 

interaction, home banking, trip planning or requesting a doctor's appointment. Every day new 

websites appear broadening our possibilities to accomplish tasks comfortably from home, and 

yet many times they suffer from usability problems that make them awkward and hard to use. 

One of the most popular ways of evaluating usability is by conducting usability tests, particularly, 

user tests. The benefit of user testing over inspection methods like heuristic evaluations is that it 

captures real usage data and users’ experiences. The down-side, however, is that it requires 

recruiting users and spending time and resources for experts first to design the tests and 

afterwards to analyze the results, discover the problems and find solutions for those problems. 

[1]  

UIAnalyzer tool can provide automatic advice about usability smells of user interaction for 

deployed web applications. The automated strategy to usability smell recognition is based on the 

analysis of user interaction (UI) events, linking specific UI events to usability smells, and reporting 

usability smells which makes it possible to suggest solutions for them in terms of refactoring.  

2 Scope of the Project 

 This tool will not analyze all types of website. Only static websites can be analyzed using 

UIAnalyzer.  

 This tool also will not crawl pages which needed authentication. 

  Only defined usability smell can be found using this tool. 

 The highest limit page limit for a single website is 50. 

  



2 | P a g e  
 

3 Project Description 

3.1 Specific Requirements 

The specific requirements of this project are – 

3.1.1 Functionality 

 The system will analyze the user interface of a web application. 

 This will identify the usability smell from the user interface. 

 This will provide the details of identified smell with certain parameters that determine 

the number, proportion of elements that trigger a specific smell. 

 The system will also provide suggestion to refactor the UI code the will solve the usability 

smell. 

 The system will provide a complete report of the findings which can be downloaded as 

CSV files. 

3.1.2 Usability 

 The system shall provide a uniform look and feel between all the web pages. 

 The graphical user interface will contain interactive charts. 

3.1.3 Performance 

 The product shall be based on web and has to be run from a web server. 

 The tool shall take initial load time depending on internet connection strength which also 

depends on the media from which the tool is run. 

 The performance shall depend upon hardware components of the client/customer. 

3.1.4 Web Based Requirements 

 There are no memory requirements  

 The computers must be equipped with web browsers such as Internet explorer.  

 The product must be stored in such a way that allows the client easy access to it.  

 A general knowledge of basic computer skills is required to use the product. 



3 | P a g e  
 

3.2 Usage scenario of UIAnalyzer 

UIAnalyzer will be a web based tool that will work with web application. This tool will find 

usability smells from the user interface of a web application and decide whether the web 

interface follows standard user interface pattern or not. [3] The automated strategy to usability 

smell identification is based on a process consisting of three steps: Events Logging, Usability 

Smells Detection, and Reporting. 

3.2.1 Events logging 

First the user will enter the URL of the application which will be analyzed. Then the events logging 

step will be started. The Events Logging step will be implemented by an automated selenium 

script that intercepts selected low-level UI events and parses the html raw code. Whenever the 

script loads a page, it will start analyzing low-level events like page scrolling, form submission. It 

will then processes these events according to different criteria and generates higher-level 

usability events for further analysis. The script will be able to capture usability events when it 

crawls across different pages, such as the DOM load time, page height, input fields, form 

validation, response time of a request. 

The usability events and their related usability smells are given below- 

Table 1: Usability Smells [1] 

Event/Elements Usability Smell 

Clickable elements (anchor tag, button) Undescriptive Element 

Flash Scrolling Overlooked Contents 

Link No link, Broken link 

Text Input Unformatted Input 

Request Long request 

 



4 | P a g e  
 

1. No link, broken link: This smell triggers when an anchor tag has no href attribute. Also if 

the link does not exist, the tool marked it as a broken link [1].  

2. Flash Scrolling: This smell triggers when a page height is more than 1556px. 

3. Long Request: If any server request takes longer than 3 ms, this will occur a long request.  

4. Undescriptive Element: If any anchor tag or button has not any descriptive text, image or 

icon on it, it will marked as an undescriptive element [1]. 

5. Unformatted Input: When any input field has no formatting attributes like maxlength, 

type etc. it will be marked as an unformatted input [1]. 

 

3.2.2 Smell Detection 

The Usability Smell Detection step will take place at the server, using the different kinds of 

usability smell finders. Each kind of finder will detect a specific type of usability smell, and each 

application under analysis will have its own set of finders with potentially different 

configurations. A finder classifies the detected usability smells by a common criterion, generally 

by the affected DOM element, but also by URL or URL sequence. When smells are classified by 

DOM element, it's important to note that a single HTML template may be used to generate 

different but equivalent DOM elements [1]. 

 

Figure 1: The three steps of the UIAnalyzer System 



5 | P a g e  
 

3.2.3 Reporting 

This tool will report bad smells as they appear. It will show detailed information on every bad 

smell, including when possible a live view of the affected widget. Each usability smell shows 

specific data for a better understanding of the problem. The user can also be able to download 

the report in CSV format. This report will evaluate the application whether the UI patterns are 

followed properly or not.  

The steps of the whole system is shown in figure 1. 

  



6 | P a g e  
 

4 Scenario-Based Modeling 

4.1 Use-case Diagram 

Use Case diagrams give the non-technical view of the overall system. 

Level-0 Use case Diagram -UIAnalyzer is shown in figure 2. 

 

Figure 2: Level-0 Usecase Diagram 

Name  

ID  

Primary Actors  

UIAnalyzer 

UIANALYZER-L-0  

User 

 

Level-1 Use case Diagram -UIAnalyzer is shown in figure 3. 

 

Figure 3: Level-1 Usecase Diagram 

Name  

ID  

Primary Actors  

Subsystems of UIAnalyzer 

UIANALYZER-L-1  

User 

 

  



7 | P a g e  
 

Description of Use Case Diagram Level 1: 

UIAnalyzer will be a web based tool that will work with web application. This tool will find 

usability smells from the user interface of a web application and decide whether the web 

interface follows standard user interface pattern or not. The automated strategy to usability 

smell identification is based on a process consisting of three steps:  

1. Events Logging,  

2. Usability Smells Detection, 

3. Reporting. 

Action-Reply of Use Case Diagram Level 1: 

Action 1: User will invoke the software 

Reply 1: System will start the software 

Action 2: User will enter the site URL of the web application 

Reply 2: System will start event logging. If the event is found, it will record it as a smell. 

Action 3: User will choose option for report. 

Reply 3: The system will generate the refactoring suggestion and statistical report. 

Action 4: User will choose option for CSV 

Reply 4: The CSV will be generated and downloaded. 

 

  



8 | P a g e  
 

4.2 Activity Diagram 

The activity diagram of the total system is shown in figure 4. In this diagram, the basic activity 

flow of the software is shown in brief. 

 

Figure 4: Activity Diagram of Whole System  



9 | P a g e  
 

5 Class-Based Modeling 

5.1 Final Classes 

The final classes are identified from the scenario of this project. Those are: 

1. WebExplorer 

2. EventPreprocessor 

3. SmellIdentifier 

4. ReportGenerator 

5. CSVGenerator 

6. ToolManager 

The class cards of these classes are shown in tables below: 

 

Table 2: Class card of WebExplorer Class 

1.WebExplorer 

Attributes Methods 

- getURL(), 

fetchingData(),  

parseData() 

 

 

Table 3: Class card of EventProcessor class 

 2.EventPreprocessor 

Attributes Methods 

actionList 

 

getAction(),  

parseAction(), 

ExtractEvent() 



10 | P a g e  
 

Table 4: Class card of SmellIdentifier class 

 3.SmellIdentifier 

Attributes Methods 

smellName, 

targetElement 

 

getEvent(),  

parseEvent(), 

CalculateDistanceBetweenElement(), 

getAffectedElement(), 

ExtractSmell() 

 

Table 5: Class card of ReportGenerator Class 

 4.ReportGenerator 

Attributes Methods 

smellList, 

urlList 

 

readSmellList(),  

generateRefactoringSuggestion(), 

generateChart() 

 

Table 6: Class card of CSVGenerator Class 

 5.CSVGenerator 

Attributes Methods 

fileName 

filePath 

 

getSummaryReport(), 

generateCSV() 

 

Table 7: Class card of ToolManager Class 

 6.ToolManager 

Attributes Methods 

- 

 

initiateWebExplorer(), 

initiateSmellIdentifier(), 

initiateReportGenerator() 

 



11 | P a g e  
 

5.2 Class Diagram 

The class diagram of the project “UIAnalyzer” is shown in figure 5. 

 

Figure 5: Class Diagram of UIAnalyzer 

  



12 | P a g e  
 

6 Architectural Design 

6.1 Overview 

The application is based on 2-tier architecture. The software is divided into a presentation layer 

and a logic layer (figure 6). There is no persistence layer because no database is needed. 

 

Figure 6: 2-tier architecture of UIAnalyzer 

The presentation layer is where all the user interactions take place. The presentation layer 

communicates with the logic layer. Here the logic layer will be a REST API that provides URL 

endpoints for the presentation layer to communicate. Through the logic layer the inputs are 

processed and information are returned to the client which is shown in figure 7. 

 

Figure 7: Archetectural overview of UIAnalyzer 

When the client requests the server for the application a webpage eill be loaded. Later on the 

request to analyze a web application will be AJAX calls. The server will reply in JSON. 



13 | P a g e  
 

6.2 Instantiations of the System 

The instantiations of the whole system is given below: 

 

Figure 8: Instantiations of UIAnalyzer 

6.3 Elaborated Deployment 

The elaborated deployment of the system is given below: 

 

Figure 9: Elaborated Deployment of UIAnalyzer 

  



14 | P a g e  
 

7 User Interface Design 

The mock graphical interface design is provided in the following part. When the user will initiate 

the tool, s/he will see the first page shown below.  

 

Figure 10: Home page of UIAnalyzer 

First the user will enter the URL of the application which will be analyzed. Then the events logging 

step will be started.  

  



15 | P a g e  
 

Then the application will be under analysis state. The actions performed by the user will be 

recorded for event identification. 

 

Figure 11: Application Under Analysis View 

  



16 | P a g e  
 

After the application under analysis step, the system will detect the usability smell if there is any 

smell. Each smell will contain some imformtation like smell name, specific element and 

refactoring suggestion. 

 

Figure 12: Smell Specific View 

  



17 | P a g e  
 

Then the user can see a summary report of the application h/she has wanted. The summary 

report will contain different types of usability smells found on that system. The use can 

download the report in CSVformat if he/she wants to.  

 

Figure 13: Summary Report View 



18 | P a g e  
 

8 Implementation Overview  

This chapter aims to describe the implementation process of “UIAnalyzer”. Here the technologies 

that have been used to develop this system will be described in brief. Implementation is the stage 

in the project where the theoretical design is turned into a working system. 

8.1 Technology Used in implementation 

Development technologies are growing very rapidly with the increase of requirements. The 

technologies that have been used to develop this system is the most recent technologies and also 

very much appropriate to it. 

The whole implementation has two parts- the web api for data communication and the UI for 

presentation.  For serving the client I made a REST API that receives client requests and serves 

JSON data (webpage analysis data, smell specific data). This API is written in Python. Python is 

very suitable for designing prototypes as a working implementation can be produced in minimal 

code. Not only is it concise it's also easy for others to read. I also used Flask framework for making 

the web API. Flask is a micro-framework written in Python. I considered Django but realized it 

would be too heavy for my project. Flask is a lot more lightweight framework and is easier to use. 

8.1.1 Client-side Technology 

The user interface is the working environment for the user. Various languages and libraries have 

been used to develop this project. They are: 

 Hyper Text Markup Language (HTML)  

Hyper Text Markup Language (HTML) is the main markup language for web pages. HTML 

elements are the basic building-blocks of a webpage. The latest HTML5 has been used for 

developing this system.   

 Cascading Style Sheets (CSS)  

Cascading Style Sheets (CSS) is a stylesheet language used for describing the presentation of a 

document written in a markup language. Although most often used to set the visual style of web 

pages and user interfaces written in HTML. CSS3 have been used for developing this system.  



19 | P a g e  
 

 JavaScript (JS)  

JavaScript is a high-level, dynamic and interpreted run-time language. Alongside HTML and CSS, 

JavaScript is one of the three core technologies of World Wide Web content production. The 

majority of websites employ it and all modern Web browsers support it without the need for 

plug-ins.  

 Bootstrap (front-end framework)  

Bootstrap is a free and open-source collection of tools for creating websites and web 

applications. It contains HTML- and CSS-based design templates for typography, forms, buttons, 

navigation and other interface components, as well as optional JavaScript extensions. 

8.1.2 Server-side Technology 

For back-end coding, various languages and libraries have been used- 

 Python 

Python is an interpreted high-level programming language for general-purpose programming. 

Python has a design philosophy that emphasizes code readability, notably using significant 

whitespace. It provides constructs that enable clear programming on both small and large scales. 

It supports multiple programming paradigms, including object-oriented, imperative, functional 

and procedural, and has a large and comprehensive standard library. 

In this project, I have used Python 3.6.4 

 Flask 

Flask is a micro web framework written in Python. It is classified as a microframework because it 

does not require particular tools or libraries. It has no database abstraction layer, form validation, 

or any other components where pre-existing third-party libraries provide common functions. 

Extensions exist for object-relational mappers, form validation, upload handling, various open 

authentication technologies and several common framework related tools 

In this project, Flask 0.12.2 is used. 



20 | P a g e  
 

 Beautiful Soup 

Beautiful Soup is a Python package for parsing HTML and XML documents (including having 

malformed markup, i.e. non-closed tags, so named after tag soup). It creates a parse tree for 

parsed pages that can be used to extract data from HTML, which is useful for web scraping. 

In this project, I have used beautifulsoup 4.6.3 

 Requests 

Requests is a Python HTTP library, released under the Apache2 License. The goal of the project is 

to make HTTP requests simpler and more human-friendly. 

For UIAnalyzer, I have used requests 2.18.4 

 Selenium WebDriver 

Selenium is a portable software-testing framework for web applications. Selenium WebDriver 

accepts commands and sends them to a browser. This is implemented through a browser-specific 

browser driver, which sends commands to a browser and retrieves results. Most browser drivers 

actually launch and access a browser application (such as Firefox, Chrome, Internet Explorer, 

Safari, or Microsoft Edge). 

In this project I have used Selenium ChromeDriver 2.44 

8.1.3 Implementation Tools 

As types of software are increasing day by day, new implementation tools are also needed for 

their implementation. Nowadays, there are many implementation tools. Developers have to 

choose right tools for each part of their application. If they can utilize tools perfectly, their labor 

can be reduced. 

 Visual Studio Code 

Visual Studio Code is a source code editor developed by Microsoft for Windows, Linux and 

macOS. It includes support for debugging, embedded Git control, syntax highlighting, intelligent 



21 | P a g e  
 

code completion, snippets, and code refactoring. It is also customizable, so users can change the 

editor's theme, keyboard shortcuts, and preferences. It is free and open-source. 

For development purpose, I have used Visual Studio Code 1.29 

 SourceTree 

SourceTree is a Git and Mercurial desktop client for developers on Mac or Windows. To conduct 

the project I have used Git. To use Git easily, I have used SourceTree. 

8.2 System Configuration 

This section has shown the minimum and recommended requirement for UIAnalyzer both server 

and client. 

8.2.1 Server Requirements 

Table 8: Server Requirements for UI Analyzer 

Windows 10/8/7 (incl.64-bit) Linux 

1 GB RAM minimum, 2 GB RAM 

recommended 

512 MB RAM minimum, 1 GB RAM 

recommended 

Python 2.7 or higher, Python 3.6 

recommended 

Python 2.7 or higher, Python 3.6 

recommended 

 

8.2.2 Supported Browsers 

Table 9: Supported Browsers for different OS 

 Chrome Firefox Internet Explorer Microsoft Edge 

Mac Supported Supported N/A N/A 

Windows Supported Supported Supported, IE10+ Supported 

 

  



22 | P a g e  
 

8.3 Source Code Description 

There were six analytic classes from the SRS document. Those are- 

1. WebExplorer 

2. EventPreprocessor 

3. SmellIdentifier 

4. ReportGenerator 

5. CSVGenerator 

6. ToolManager 

8.3.1 WebExplorer class 

WebExplorer class is a class where a website link is taken as input, crawls the link, parse the 

information. 

Attributes: This class has three attributes. They are:  

1. homeurl,  

2. scanned_urls[],  

3. nonscanned_urls[] 

Functions: The functions are given in the following Table 10 

Table 10: Function description of WebExplorer class 

Functions Description 

getURL(url), This function capture the given url. Initiates parsing 

checkEligibile(url) This function checks eligibility of website url 

getParse() This function extracts all links from a webpage. Also 

decides the link should be in scanned_urls or not by 

checking the type of a link (e.g #, http, https) 

crawlSite() The function visits all possible way into a website using 

the getParse() and checkEligible() method  



23 | P a g e  
 

8.3.2 EventPreprocessor class 

EventPreprocessor class initiates selenium driver, checks the attributes of html elements, 

captures request time and page height of a webpage. 

Attributes: This class has three attributes. They are:  

1. elements[] 

2. pageHeights[],  

3. responseTimes[] 

Functions: The functions are given in the following Table 11 

Table 11: Function description of EventPreprocessor class 

Functions Description 

initiateSelenium() This function initiates selenium driver for start event 

execution 

parseAction(event) This function takes event as parameter, parse the 

action and returns parsed elements[] 

getPageHeight(url) This function gets the page height of a webpage  

getResponseTime() This function extracts response time for a server 

request event 

 

8.3.3 SmellIdentifier class 

SmellIdenrifier class initiates smell identification, get all parsed information about pages, 

elements and events and decides what type of smell is found.. 

Attributes: This class has two attributes. They are:  

1. smells[] 

2. pageUrls[],  

Functions: The functions are given in the following Table 12 



24 | P a g e  
 

Table 12: Function description of SmellIdentifier class 

Functions Description 

getParsedAction(event) This function gets the parsed action and records the 

extracted information 

getParsedElement(element) This function gets the parsed element record the 

extracted information 

IdentifySmell(element, event) It takes parsed element and  event and decides what 

type of smell it contains 

 

8.3.4 ReportGenerator class 

ReportGenerator class initiates report generation, generate refactoring suggestion and 

generate summary report. 

Attributes: This class has two attributes. They are:  

1. smells[] 

2. pageUrls[],  

Functions: The functions are given in the following Error! Reference source not found. 

Table 13: Function description of ReportGenerator class 

Functions Description 

getSmellList() From SmellIndentifer class this function gets all smell 

found in a specific website with page url, element list 

and event list 

generateRefactoringSuggestion(smell) This function generates refactoring suggestion for 

each smell found 

generateAverage(smells[], url) This function gives the average smell found per page 

 



25 | P a g e  
 

8.3.5 CSVGenerator class 

CSVGenerator class serves the purpose of generating CSV files for all specific smell and 

download the files. 

Attributes: This class has two attributes. They are:  

1. filePath 

2. fileName 

Functions: The functions are given in the following Table 14 

Table 14: Function description of CSVGenerator class 

Functions Description 

generateCSV() This function gets the result from ReportGenerator 

class and generates CSV 

downloadCSV(filename, filePath) This function downloads the CSV 

 

8.3.6 ToolManager class 

ToolManager class initiates the tool, starts the server and serves different routes. 

Attributes: This class has no attribute.  

Functions: The functions are given in the following Table 12 

Table 15: Function description of ToolManager class 

Functions Description 

initiateServer() This function starts the server 

serveRoute(rotues) This function serves specific routes for different 

purposes 

 

 

 

  



26 | P a g e  
 

9 Test Plan, Test Cases and Automated Testing 

9.1 Test Item to be tested 

Name: UIAnalyzer 

Type: Web Application 

Version: 1.0 

9.2 Features to be tested 

 UI Smell identification 

 Provide the details of identified smell with certain parameters that determine the 

number, proportion of elements that trigger a specific smell. 

 Report generation of the findings which can be downloaded as CSV files. 

9.3 Features not to be tested  

There is no such feature. All the features will be tested. 

9.4 Approach  

Since the test item is a website, I have tested it locally using the Python Flask server. I have divided 

the functionalities into modules and test each feature using Black Box Testing. This testing will 

be done using Selenium (A portable software-testing framework for web applications). The test 

cases will be prepared with Robustness Testing. The input specifications will be prepared using 

the specifications acquired from the SRS. 

9.5 Item Pass Fail Criteria  

If 90% of the prepared tested cases pass, then it is considered the project as a whole to pass. 

9.6 Test Deliverables  

The deliverable documents are:  

1) Test plan 

2) Test case specifications 

  



27 | P a g e  
 

9.7 Testing Tasks  

Preparing and setting up system environment: Before executing the test cases I have to prepare 

the server, which is a local Python Flask server.  

Tasks for test case: The features will be divided into three modules of testing.  

1) Testing Events Logging  

2) Testing Smell identification  

3) Testing Report Generation 

9.8 Testing cost  

Cost to support the environment: Since it is a web-based software, I need internet connection 

to support the environment. So, the cost to maintain internet connection in order to continue 

the testing.  

Cost of executing the tests: I did not need any executing test cost.  

9.9 Test design specification 

S. No Functionality Use case no in SRS Test cases 

1 Check valid website url 1 T1 

2 Smell identification 1 T2 

3 Report generation 1 T3 

Reference Usecase: 

 

Figure 14: Level-1 Usecase Diagram 

 



28 | P a g e  
 

9.10 Test case specifications 

Table 16: Test specifications of T1 

Test case Specification Identifier T1 

Purpose To check the functionality of ‘Check valid website url’ 

Test Items Needed Refer Usecase-1 in SRS 

Special Environmental Internet should be in working condition.  

Special Procedural Requirements - 

Inter-case Dependencies - 

Input Specifications Enter URL as given below: 

data.gov.abc 

www.gov 

Test Procedure Press ‘Enter’ button 

Expected system response Redirect to error page 

Pass/Fail Pass 

 

Table 17: Test specifications of T2 

Test case Specification Identifier T2 

Purpose To check the functionality of ‘Smell identification’ 

Test Items Needed Refer Usecase-1 in SRS 

Special Environmental Internet should be in working condition.  

Special Procedural Requirements - 

Inter-case Dependencies - 

Input Specifications Enter URL as given below: 

data.gov.bd 

Test Procedure Press ‘Enter’ button 

Expected system response Redirect to analysis page and show smell report 

Pass/Fail Pass 

  



29 | P a g e  
 

Table 18: Table 8: Test specifications of T2 

Test case Specification Identifier T3 

Purpose To check the functionality of ‘Report generation’ 

Test Items Needed Refer Usecase-1 in SRS 

Special Environmental Internet should be in working condition.  

Special Procedural Requirements - 

Inter-case Dependencies T2 test case must be executed prior to the current test 

case execution. 

Input Specifications - 

Test Procedure Press ‘Download CSV button 

Expected system response A CSV file will be download with specific smell result 

Pass/Fail Pass 

 

9.11 Test case execution using Selenium 

I have used Selenium IDE to execute the test cases. Selenium is a portable software-testing 

framework for web applications. Steps to follow how I have executed the test cases using 

Selenium IDE (Chrome Extension).  

1. Localhost Server Setup Steps: 

a. First you have to clone the UIAnalyzer project. The github link of the project is given 

below: https://github.com/AquibAzmain/UIAnalyzer.git 

b. You need python 2.7 or higher install in your machine. Windows 7+, Linux is 

recommended. 

c. Go to the root folder of the project and run the command ‘pip install --r 

requirements.txt’. It will install all dependencies of this project. 

d. Finally you have to run the command ‘python run.py’. It will start a server on the url 

‘localhost:9000’. Just go to browser, enter the url and hit enter. 

  



30 | P a g e  
 

2. Test Environment: 

 Operating System: Windows 10 

 Browser: Google Chrome Version 70.0.3538.102 (Official Build) (64-bit) 

 Selenium IDE: Version 3.4.4 

 Proper internet connection 

3. Download and add Selenium IDE into Google Chrome if it is not added. Download link is 

given below: 

 chrome.google.com/webstore/detail/selenium-ide/mooikfkahbdckldjjndioackbalphokd? 

4. Run Selenium IDE. 

5. Add a new project named ‘UIAnalyzer’. Enter home url: localhost:9000 

6. Add a new test case named ‘T1’ 

7. Add new commands and execute the test case (Figure 15) and get the error page. 

 

 

Figure 15: Selenium test case 1 and output 

8. Then create new test case T2 and execute it. It will redirect to the analysis page (Figure 16). 



31 | P a g e  
 

 

Figure 16: Selenium test case 2 and output 

 

9. And lastly create and execute test case T3. For this you have to run the test case T2 first. A 

CSV file will be downloaded. 

 

Figure 17: Selenium test case 3 

  



32 | P a g e  
 

10 User Manual 

 

 

What is UIAnalyzer?  

UIAnalyzer is a web-based analytics tool 

that identifies and reports website UI 

smell. We can use these reports to get 

actionable insights and use them to take 

steps to improve our website. 

  

Why should we use it?  

UIAnalyzer helps you analyze front end 

code and performance of a web 

application and paint a complete picture 

of the user interface. In a nutshell, 

UIAnalyzer provides information about:  

 What kind of usability smell 

found in your website  

 Page height 

 DOM load time 

 How many pages scanned 

 How many html  elements 

contain smell 



33 | P a g e  
 

How to use UIAnalyzer?  

1. Open your browser, type the url: localhost:9000 and hit enter (Figure 18) . If the server is 

running on a different machine, you have to enter the ip address of that machine (e.g 

10.100.102.145:9000). 

 

Figure 18: Enter url of UIAnalyzer 

2. You will get the homepage of UIAnalyzer (Figure 19). You will have to enter the desired 

website url (e.g data.gov.bd) in the marked text filed and hit enter. 

 

Figure 19: Homepage of UIAnalyzer 



34 | P a g e  
 

3. If you enter an invalid website url which does not exist, have been removed, name 

changed or temporarily unavailable you will get error message (Figure 20). 

 

Figure 20: Error page 

4. If you enter a valid url you will get the analysis result page (Figure 21). 

 

Figure 21: Analysis result 

   



35 | P a g e  
 

Analysis page Interface 

Analysis result page is divided into 5 sections. They are: 

1. Overall analysis 

2. UI Smell Summary 

3. UI Smell Meter 

4. Screenshot of analyzed website homepage 

5. List of pages scanned 

 

 

Figure 22: 5 sections of the analysis page 

1 

2 3

 

 
2 

 
2 

4

 

 
2 

 
2 

5

 

 
2 

 
2 



36 | P a g e  
 

Overall analysis view 

From this section you can get overall analysis information about the target website. Like: 

1. Website url: The target website url you have entered for analysis 

2. Pages scanned: The number of pages scanned. The url of these pages has been extracted 

from the target website by UIAnalyzer. 

3. Average Page Height: This shows you the average height of all the pages scanned of the 

website. 

4. Average DOM Load Time:  This will give you the average DOM processing time of all pages 

of the website. DOM processing is the time it takes to parse the HTML into a DOM and 

retrieve or execute synchronous scripts. [6] 

5. Average Smell: This shows average smell number found in a particular page. It indicates 

the quality of the pages of the website.  

 

Figure 23: Overall analysis view 

Smell Summary View 

This section (Figure 24) will show you what type of UI smell is found in the website and also show 

the found percentage. The “Download CSV” button is available to download the detailed result 

of the analysis. The smells that can be found by UIAnalyzer is given below: 

6. No link, broken link: This smell triggers when an anchor tag has no href attribute. Also if 

the link does not exist, the tool marked it as a broken link. The found % of this smell 

follows the formula: 

no link count +  broken link count

𝑎𝑙𝑙 𝑙𝑖𝑛𝑘𝑠 𝑓𝑜𝑢𝑛𝑑
× 100 

  



37 | P a g e  
 

7. Flash Scrolling: This smell triggers when a page height is more than 1556px. The found % 

of this smell is measured by the formula: 

𝑓𝑙𝑎𝑠ℎ 𝑠𝑐𝑟𝑜𝑙𝑙 𝑐𝑜𝑢𝑛𝑡

𝑝𝑎𝑔𝑒 𝑐𝑜𝑢𝑛𝑡
× 100 

8. Long Request: If any server request takes longer than 3 ms, this will occur a long request. 

The found % of this smell is measured by the formula: 

𝑙𝑜𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑐𝑜𝑢𝑛𝑡

𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑐𝑜𝑢𝑛𝑡
× 100 

 

9. Undescriptive Element: If any anchor tag or button has not any descriptive text, image or 

icon on it, it will marked as an undescriptive element. The found % of this smell is 

measured by the formula: 

𝑢𝑛𝑑𝑒𝑠𝑐𝑖𝑝𝑡𝑖𝑣𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡

𝑎𝑛𝑐ℎ𝑜𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑢𝑛𝑡 + 𝑏𝑢𝑡𝑡𝑜𝑛 𝑐𝑜𝑢𝑛𝑡
× 100 

10. Unformatted Input: When any input field has no formatting attributes like maxlength, 

type etc. it will be marked as an unformatted input. The found % of this smell is measured 

by the formula: 

𝑢𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑡𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑢𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑓𝑖𝑒𝑙𝑑 𝑐𝑜𝑢𝑛𝑡
× 100 

 

 

Figure 24: Smell Summary View 



38 | P a g e  
 

Some sample CSV results are shown below. Figure 25 is showing the No link and broken link found 

in the website. It shows the page link, html line number of the anchor tag, smell status and 

refactoring suggestion also. 

 

Figure 25: No link, Broken link report 

Figure 26 shows the flash scrolling smell report of the website. This CSV will you provide you the 

page heights of the all the pages scanned of the website, flash scrolling status and refactoring 

suggestion. 

 

Figure 26: Flash scrolling report 

  



39 | P a g e  
 

UI Smell Meter View 

The section (Figure 27) show the total elements, pages scanned and total number of smell found 

in a website. The percentages are showing the quality of the website. 

 

Figure 27: Smell meter view 

Homepage Screenshot 

This section (Figure 28) shows the screenshot of the homepage of the website which has to be 

analyzed. 

 

Figure 28: Screenshot view 

  



40 | P a g e  
 

List of Pages View 

This section (Figure 29) contains a table of all the pages scanned from the website along with 

their DOM load time and page height. 

 

Figure 29: List of pages view  

  



41 | P a g e  
 

11 Conclusion  

With all requirements satisfied I consider this project to be a success. UIAnalyzer is a web-based 

analytics tool that identifies and reports website UI smell. It tool can provide automatic advice 

about usability smells of user interaction for deployed web applications. The automated strategy 

to usability smell recognition is based on the analysis of user interaction (UI) events, linking 

specific UI events to usability smells, reporting usability smells which makes it possible to suggest 

solutions for them in terms of refactoring and generating CSV reports.  

The work carried out on this project opens itself to a number of future uses. Of course, many of 

the classes and structures in the project were designed with code reuse in mind. The event parser 

and smell identifier are the examples of that. I myself fully intend to continue work in future on 

this topic about usability smell findings without human interaction.   



42 | P a g e  
 

References 

[1] Julián Grigera, A. G. (January 2017). Automatic detection of usability smells in web applications. 

International Journal of Human-Computer Studies, Pages 129-148. 

[2] Arnaud Blouina, V. L. ( October 2018). User interface design smell: Automatic detection and 

refactoring of Blob listeners. Information and Software Technology, Pages 49-64. 

[3] Clara Sacramento, A. C. (2014). Web Application Model Generation through Reverse Engineering 

and UI Pattern Inferring. 9th International Conference on the Quality of Information and 

Communications Technology. Guimarães, Portugal. 

[4] Faria, M. N. (2014). Inferring User Interface Patterns from Execution Traces of Web Applications. 

International Conference on Computational Science and Its Applications.  

[5] Patrick Harms, J. G. (29 Nov 2016). Usage-Based Automatic Detection of Usability Smells. 

International Conference on Human-Centred Software Engineering, 217-234. 

[6] Xiao Sophia Wang, A. B. (2013). Demystifying Page Load Performance with WProf. 10th USENIX 

Symposium on Networked Systems Design and Implementation , 473-485. 

 

 


