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Abstract

Python has witnessed substantial growth, establishing itself as one of the world’s
most popular programming languages. Its versatile applications span various soft-
ware and data science projects, empowered by features like classes, method chaining,
lambda functions, and list comprehension. However, this flexibility introduces the
risk of code smells, diminishing software quality, and complicating maintenance.
While extensive research addresses code smells in Java, the Python landscape lacks
comprehensive automated solutions. Our paper fills this gap in two ways. Firstly,
by constructing a dataset using a tool from existing literature, Pysmell [16]. The
tool, given a project directory, determines python files and produces comma sepa-
rated files for code smells that are present in the python file. We create a dataset
containing github projects and run the tool on our dataset. Then we select five
comma separated code smell files: Large Class, Long Method, Long Lambda Func-
tion, Long Parameter List and Long Message Chain. The comma separated files
are then combined to produce a multi-label dataset of code smells. Ensemble tech-
niques and neural networks are trained on the dataset to analyse the performance of
machine learning models in predicting code smells given a metric. Secondly, our ap-
proach extends to designing and building a simple automated refactoring algorithm,
aiming to reduce long method code smells by extracting out large if-else statements
and elevate overall software quality. In a landscape where automated detection and
refactoring for Python code smells are nascent, our research contributes essential
advancements.

Keywords: Python, Code Smells, Code Refactoring, Machine Learning,
Code Analysis, Software Quality, Software Maintenance, GitHub Repos-
itories
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Chapter 1

Introduction

1.1 Background

The success of any software depends heavily on maintaining code quality in the con-
stantly changing world of software development. Dealing with “code smell” is one
of the main obstacles that developers face on this path. A code smell is the term for
those subtle and not-so-subtle signs that the codebase may be flawed. It’s similar
to that lingering, repulsive smell that signals a problem that needs to be addressed.

Code smell refers to a variety of programming habits and problems that are not tech-
nically defects but can impair the maintainability, scalability, and general quality of
a codebase[31]. These problems show up as unnecessary code, excessively compli-
cated structures, or poor design decisions. A code smell is a cue for developers to
dig deeper into their code, much as a bad smell might indicate underlying issues.

It’s important to identify and fix code smells for a number of reasons. First of
all, it has an immediate e↵ect on the development process’s e�cacy and e�ciency.
Code bases with a lot of code smells are more challenging to comprehend, alter,
and extend. As a result, it is more likely that while making modifications, genuine
problems will be introduced or unwanted side e↵ects will be produced. Additionally,
code smell can raise maintenance costs and reduce the agility needed in the quick-
paced software development settings of today. Technical debt, which builds up as a
result of unchecked code stench, may hinder creativity and impede the advancement
of software.

It is evident that code smells can hinder the quality of a software and dealing with
such code smells can be frustrating for developers. After researching on automated
detection and refactoring of software, we found that many tools have been build to
address this issue for JAVA programming language. However, we found a gap in the
study for the python programming language. There are many tools which uses IDE
plugins and compilers to perform the tasks in question. Nevertheless, we wanted
to take an approach that is more future proof by introducing machine learning and
deep learning to detect code and refactor code smells in python. Our paper makes
the following contributions:

• Makes a comparative analysis on IDE plugins and compilers with machine
learning and deep learning models to address the issue.
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• Create a dataset with existing tool in the literature called Pysmell and run
ANN and ensemble learning models on the dataset to analyse their perfor-
mance. Moreover, we also analyse the relationship between metrics of code
smells.

• Lastly, we propose a simple algorithm to refactor long method code smell using
extract method algorithm and analyse its limitations.

1.2 Problem Statement

While building software, it is important to ensure that it is maintained, performs
well, and has high longevity. This can be done through the identification and re-
mediation of code smells in software. Despite code smell detection and refactoring
being some of the fundamental factors for writing clean code, however, there is a
challenge in optimizing and automating this whole procedure. In light of this mat-
ter, the main goal of this study is to leverage machine learning techniques to build a
systematic, automated, and precise system for figuring out code smells in the Python
programming language and fixing them with the aid of refactoring paradigms. With
this goal in mind, this study answers the following research questions:

• RQ1: Do machine learning and deep learning techniques perform better than
IDE plugins / compilers when it comes to detecting and refactoring codes?

• RQ2: How to design a Python dataset that would allow machine learning
algorithms to e↵ectively analyze and recognize code smells?

• RQ3: How to train the machine learning algorithms in order to detect code
smells from the Python dataset?

• RQ4: How to create an intelligent system that would provide actionable refac-
toring suggestions?

1.3 Research Objective

This paper aims to analyse the e↵ectiveness of machine learning models in detection
of code smells and building a simple refactoring tool for Python projects. The
dataset that will be created for the models to train on will be taken from GitHub
repositories. The python files in the repositories will go through a tool that will
identify code smells present and create a comma separated file for each code smell.
The models will then be trained on the aggregation of the comma separated files to
predict the following code smells:

• Large Class.

• Long Method.

• Long Message Chain.

• Long Parameter List.

• Long Lambda Function.
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Furthermore, the paper will discuss how a refactoring algorithm was implemented
to refactor one of the most prominent code smell, long method, without human
intervention, improving the quality of the code base.

We will then evaluate the e↵ectiveness and e�ciency of the proposed algorithm by
running it on four di↵erent python files and finding out the limitations.
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Chapter 2

Detailed Literature Review

2.1 Test Smell Detector for Python

The paper [36] begins by outlining the idea of “code smells” before gliding into the
topic of “test smells”, which are essentially “code smells” resulting from subparly
constructed test cases that have a negative e↵ect on the production code. The
writers, Goluben et al., figured that there was a substantial gap in the testing tool
scenario by indicating that while test-smell detecting tools are hugely available for
JAVA and Scala, they are noticeably absent for Python. The paper [36] talks about
a novel tool called Pynose, which was created to fill out this gap. The first steps in
their methodology included selecting specific test smells for analysis [36]. Goluben et
al. was able to identify 33 di↵erent test smells in JAVA, Scala, and Android systems
by performing a systematic mapping study of test smells. From the 33 identified
smells 17 test smells were customized for Python’s Unittest testing framework after
performing a careful filtering process. The paper [36] also emphasizes how crucial
it is for the framework of the tool to address Python-specific test smells.

Thereafter, the authors of the paper [36] started the creation of primary dataset,
diligently gathering 450 project from GHTorrent, all meeting rigorous criteria: at
least 10 contributors, no forks, 1000 commits, and a minimum criteria of 50 stars.
The authors made use of a tool, PYTHONCHANGEMINER, that can track changes
made to test files to spot Python-specific test smells within this dataset. Complet-
ing this step made the authors realize that there was a misuse of assert functions,
leading to a specific test smell known as suboptimal assert. Moreover, Pynose’s pre-
cision and accuracy in detecting test smells was evaluated using a secondary dataset,
comprising of 239 projects.

Finally, Golubev et al. architected and built the Pynose tool in such a clever way so
that it can be integrated as a plugin for PyCharm. Firstly, the tool parses and anal-
yses the Python source code using JetBrains’ IntelliJ Platform’s Python Structure
Interface (PSI), ensuring both syntactic and semantic examination [36]. After this,
the tool selectively extracts classes belonging to unittest.TestCase. Lastly, the tool
employs specific detector classes to detect test smells within the extracted classes.
The tool intelligently presents the detected code smells in the integrated develop-
ment environment (IDE) or saves them in a structured JSON format. Remarkably,
the evaluation of the tool using the secondary dataset demonstrated an impressive
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precision rate of 94% and an equally commendable recall rate of 95.8%, rea�rming
its e�cacy in detecting and addressing test smells within Python codebases [36].

2.2 Automated Code Smell Refactoring Tool: Fault-
Buster

Nagy et al. assert that the process of refactoring presents a formidable and intri-
cate challenge. During the course of refactoring code, developers may inadvertently
introduce new defects. The problem is made worse by the widespread belief among
tools on the market that developers are naturally skilled at refactoring, a belief that
is not always accurate [15]. Furthermore, the research paper underscores that refac-
toring recommendations constitute the most frequently inquired-about topic on the
Stack Overflow platform.

Nagy et al. clarify that the FaultBuster tool has been meticulously engineered to
cater to the needs of developers and quality specialists, with the primary aim of
facilitating the seamless integration of continuous refactoring as opposed to the con-
ventional approach of deferring such endeavors until the project’s completion.

This study’s authors [15] divide their tool into three essential parts: a thorough refac-
toring framework, necessary IDE plugins, and an independent Java Swing client.
Firstly, the refactoring framework undertakes the continuous evaluation of source
code quality, identifies instances of code smells, and e↵ectuates remedial adjust-
ments in accordance with an embedded refactoring algorithm. Secondly, the IDE
plugin serves the crucial function of facilitating the retrieval of outcomes generated
by the refactoring framework and e↵ectuating the application of the said refactoring
algorithm. Lastly, the Standalone desktop client serves as the conduit for seamless
communication with the Refactoring framework.

Nagy et al. subjected their tool to rigorous assessment within the contexts of six
distinct corporate entities, where it was employed for the refactoring of extensive
codebases totaling 5 million lines of code. As a result of these e↵orts, the tool
adeptly resolved 11,000 code-related issues. Substantiating its e�cacy, FaultBuster
underwent exhaustive testing and demonstrated the capacity to proficiently rectify
approximately 6,000 instances of code smells [15].

2.3 Pysmell: A Metric Based Tool to Detect Code
Smells in Python Programs

Chen et al. recognized the scarcity of research concerning the automated identi-
fication of Python code smells, which are known to impede the maintenance and
scalability of Python software. The primary objective of this investigation [16] is
to identify code smells and provide support for refactoring strategies, ultimately
enhancing the software quality of Python programs.
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At first, Chen et al, acknowledged that certain standard code smells may not be
applicable in the context of Python, thus, they took on the task of classifying code
smells relevant to Python. The authors of the paper [16] conducted vigorous review
of online resources and reference manuals to find out the characteristics of Python
code smells. Some of the prominent Python smells are: Large Class, Long Parame-
ter, Long Method, Long Message Chain, and Long Scope Chaining [16].

Next, Chen et al. created a dataset that consisted of five open-source Python li-
braries, namely django, ipython, matplotlib, scipy, and numpy, comprising a huge
codebase encompassing 626,087 lines of code across 4,592 files.

At last, the authors built a tool, Pysmell, which is designed to detect code smells
based on relevant metrics. The tool’s architecture has three main components:
i) The code extractor, which cleverly extracts out the python files from a project
that is required for further investigation.
ii) The Abstract Tree Analyzer constructs a abstract syntax tree from the extracted
file and also collects the required metric that is set for a code smell.
iii) The Smell Detector, which detect code smells based on the metric that was found
in the previous component.

To finish their study, they evaluated the Pysmell tool, achieving an impressive pre-
cision of around 98% and a mean recall of 100% in detecting code smells within
Python systems. However, as the study was conducted purely on metric there are
some biases on the results of the evaluation [16].

2.4 Code Smell Detection: Towards a Machine
Learning-Based Approach

Francesca Arcelli Fontana, Marco Zanoni, and Alessandro Marino discussed the
machine learning techniques, which are applied to identify code smells in software
development in the paper [8]. Code smells are patterns of ine�ciency that can seri-
ously harm the quality and maintainability of software. To keep codebases readable
and long-lasting in software engineering, it is essential to find code smells. This pa-
per addresses the di�culties in detecting code smell and suggests a novel approach
that makes use of machine learning to improve accuracy and e�ciency in this pro-
cedure.

The subjective nature of code smell interpretation causes di↵erences in the out-
comes. There are many technologies now in use that concentrate on computing
metrics while frequently ignoring crucial contextual factors like the domain, size,
and design components of the program under analysis. It is challenging to obtain
consistent and reliable results because of inconsistencies in threshold settings and
metric usage among instruments.

To get over these problems, the authors propose a code smell detection method based
on machine learning. More precise and reliable detection strategies are needed, and
they highlight the dearth of research on machine learning techniques in this area.
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The paper goes into great detail about the methodology, which consists of data col-
lection, code smell selection, application of detection techniques, manual code smell
candidate labeling, and machine learning classifier testing.

The authors have chosen and ranked a number of prominent and frequent code smells
according to severity, including God Class, Data Class, Long Method, and Feature
Envy. This severity rating, which ranges from “No smell” to “Severe smell”, pro-
vides developers with a framework for e↵ectively assigning priorities for code smell
management. The manual evaluation process consists of looking at potential code
smell candidates and grading their seriousness based on observable code features.
The human-generated labeled dataset is then used to train the supervised machine-
learning classifiers. The authors research a range of classifiers, including Support
Vector Machines, Decision Trees, Random Forest, Naive Bayes, JRip, and boosting
algorithms, to ascertain the most e↵ective method for detecting code odors.

2.5 Detecting code smells using machine learning
techniques: Are we there yet?

Code smells are indicators of poor design choices that can negatively impact source
code quality and maintainability. Code smell detection using machine learning (ML)
approaches is investigated by Dario Di Nucci et al.[24]. The authors acknowledge
the challenges in identifying code smell and discuss the potential advantages of using
ML to these issues. They emphasize how programmers must choose between speed
and excellent practices due to the increasing complexity of software systems. Code
maintenance becomes more di�cult when such tradeo↵s result in code smells and
other technical debt.

The research sheds light on the drawbacks of the existing code smell detection tech-
niques, including their subjectivity and the need to establish parameters that might
influence their e↵ectiveness. The authors propose a solution to these issues: code
smell detection using machine learning techniques. Code smells may be automat-
ically detected with machine learning (ML) by utilizing source code data to train
classifiers. Particular emphasis is placed on supervised machine learning techniques,
in which the existence or strength of code smells in code components is assessed
using independent variables, or predictors.

The research of Arcelli Fontana et al., which identified four categories of code
smells—Data Class, God Class, Feature Envy, and Long Method—forms the ba-
sis of this study. The majority of the classifiers in this initial collection of data
achieved accuracy and F-Measure rates above 95%, indicating potential. The au-
thors arrive at the conclusion that code smells may be identified by machine learning
(ML) approaches, and that the approach selected may not significantly a↵ect the
result.

Dario Di Nucci et al. continue to question the generalizability of the results. They
voice concerns regarding the potential impact of the dataset on the greater perfor-
mance shown by Arcelli Fontana et al. The original work employed an imbalanced
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dataset, with instances impacted by a particular type of code smell and non-smelly
cases included in each dataset for that particular sort of fragrance. In order to ad-
dress these issues, the authors perform a repeatable analysis on a di↵erent dataset
that includes code components a↵ected by di↵erent code smells. The revised dataset
more closely resembles real-world situations by less equally distributing stinky and
non-smelly occurrences. The latest research claims that the dataset employed, not
the innate capabilities of ML models, was the reason for the previous study’s surprise
success.

2.6 Code smells detection and visualization: A
systematic literature review

Another paper by Craig Anslow [33], Jose Pereira dos Reis, Fernando Brito e Abreu,
and Glauco de Figueiredo Carneiro, titled “Code Smells Detection and Visualization:
A Systematic Literature Review”, conducts a systematic literature review (SLR) on
the topic of code smell detection and visualization. This study examines the various
tools and approaches used to detect software code smells as well as the extent to
which these approaches have benefited from visualization. Code smells, also referred
to as “bad odors”, are problems with software design and code that lower program
quality and make maintenance more di�cult. The lifespan and general well-being of
software systems depend heavily on the ability to recognize and address code smells.

The results of the SLR reveal several key findings:

1. Code Smell Detection Approaches: The three techniques with the highest
usage rates for finding code smells are search-based (30.1%), metric-based
(24.1%), and symptom-based (19.3%). While metric-based techniques depend
on software metrics to identify code smells, search-based approaches seek spe-
cific patterns or structures in the code. The main goal of symptom-based
techniques is to identify code smells from observable symptoms.

2. Programming Languages: The Java programming language is the most often
examined (77.1%) in studies that employ open-source tools for code smell
detection.

3. Common Code Smells: God Class (51.8%), Feature Envy (33.7%), and Long
Method (26.5%) are the code smells that are most commonly investigated.
These code smells are typical examples of design and maintainability problems
in software systems.

4. Machine Learning (ML): In 35% of the investigations, machine learning meth-
ods are used. Code smell detection is aided by a variety of ML approaches, in-
cluding genetic programming, decision trees, support vector machines (SVM),
and association rules.

5. Visualization-Based Approaches: About 80% of the research just addresses
code scent detection and doesn’t o↵er any methods for visualizing the results.
However, when visualization is used, a variety of approaches are used, such as
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polymetric views, city metaphors, 3D visualization methods, interactive am-
bient visualization, and graph models.

The SLR o↵ers a number of tasks to help identify code smells. Reducing subjectivity
in the identification and categorization of code smells, expanding the range of de-
tected code smells and programming languages supported, and providing databases
and oracles to support the validation of code scent detection and visualization tech-
niques are the strategies mentioned above. Consequently, this extensive literature
review provides valuable insights into the current status of code smell detection and
visualization. It highlights the need for automated detection methods, especially
when dealing with complex and large-scale software systems. The study also em-
phasizes how crucial it is for practitioners to have improved visualization tools so
they can recognize and address code smells e↵ectively.

2.7 Understanding metric-based detectable smells
in Python software: A comparative study

Zhifei Chen and colleagues delve into code issues related to Python. They point
out that Pythons’ simple structure and dynamic characteristics have led to a focus
on analyzing code issues compared to rigid languages, like Java and C sharp[22].
The main goal of their study is to identify and categorize code issues in Python
programs while also examining how they a↵ect software maintainability. The paper
outlines ten code problems in Python. Explains a method, for detecting them us-
ing di↵erent threshold setting approaches; machine learning, experience-based, and
statistical analysis.

This study’s primary objective is to identify and define Python-specific code smells
and analyze their impact on software maintainability. The article discusses ten
Python code smells and develops a metric-based method for identifying them using
three separate threshold patterns: experience-based, statistics-based, and tuning
models. The study employs a compilation of 106 renowned Python projects sourced
from GitHub to analyze and evaluate these methods of identification.

The analysis, in the study, focuses on code smells, which are indicators of software
design and implementation issues. It highlights the significance of addressing code
smells to enhance and simplify applications. Various methods, such as analysis,
history-based machine learning, and metric-based machine learning are discussed
for identifying code smells. While metric-based algorithms are commonly used and
e↵ective determining thresholds can pose a challenge. Representing code smells in
Python using variables may complicate matters and impact readability and main-
tainability. Establishing benchmarks for testing Python code smells can present
di�culties in setting constraints. The study employs three detection approaches to
pinpoint and assess Python code smells revealing their prevalence and impact, on
software components.
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2.8 Comparing and experimenting machine learn-
ing techniques for code smell detection

Francesca Arcelli Fontana et al. presented research on using machine learning (ML)
approaches to detect code smells[13]. For many years, code smells have been a major
issue in software quality improvement. Code smells are di�cult to detect since var-
ious individuals have diverse ideas and solutions, and these challenges do not follow
any common principles of solution. So these issues can be resolved if we can identify
the code smells. This research investigates how machine learning (ML) methods
may be used to identify code smells automatically.

This article discusses the di�culty of identifying code smells, with an emphasis on in-
terpretation issues and the absence of clear criteria or measurements. It necessitates
a less arbitrary and more focused approach to detecting code smells. Implementing
machine learning technology would enable monitors to gain knowledge from par-
ticular cases, as suggested. The study’s primary contribution consists of practical
experiments conducted across a range of software systems and machine-learning
techniques.

The methodology involves considering specific code smells such as Data Class, God
Class, Feature Envy, and Long Method as variables, with independent variables com-
prising software design metrics. The paper underscores the importance of selecting
and labeling example instances based on the results of existing detection tools to
ensure consistent and guided data preparation. The findings presented illustrate
the performance of all tested ML algorithms on validation datasets. Notably, J48
and Random Forest outperformed other algorithms in terms of performance, while
support vector machines exhibited lower results. The paper acknowledges that im-
balanced data influences algorithm performance due to the prevalence of code smells.
However, the research findings suggest that machine learning methods can achieve
a high level of accuracy in identifying code smells. Moreover, it is noteworthy that
even with a limited number of training examples, the accuracy rate reached 95
percent.

2.9 Python code smells detection using conven-
tional machine learning models

Rana S. and Hamoud A. [41] made a clear statement on how identifying code smells
at an early stage of software development is crucial to improving the quality of the
code. Code smells are impoverished code design practices that negatively a↵ect the
quality and maintenance of the code. Most of the research by previous researchers
was done on detecting code smells in Java and less on any other programming
languages. Thus, their field of study focuses on figuring out code smells in the
Python language. They have built their own datasets like source code containing
Long method and Long Class code smells. After that, they implemented machine
learning algorithms to find the expected code smells and automate the whole process.

Rana S. and Hamoud A.[41] have created their datasets containing Python code
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smells. This is done because Python is the most used language in creating data
science and machine learning models. Therefore, they have designed datasets based
on two criteria. Firstly, they have extracted code smells based on class level and
method level. Secondly, they have extracted those code smells that are most present
in the Java programming language. As a result, they have chosen Long Methods and
Large Class code smells for their Python datasets. In the creation of the Python code
smell dataset, four Python libraries—Numpy, Django, Matplotlib, and Scipy have
been used by the researchers. The resultant dataset consisted of 18 di↵erent sets
of features, which were categorized as smelly and non-smelly for each code smell.
The datasets were further validated through the use of verified tools like Radon,
which ensured the quality of code metrics. To ensure machine learning models’ high
performance in detection, two data pre-processing steps—feature scaling and fea-
ture selection—were carried out on the datasets. Later, to detect code smells in the
source code, six machine learning algorithms like support vector machines (SVM),
random forest (RF), stochastic gradient descent (SGD), decision trees (DT), multi-
layer perceptron (MLP), and logistic regression (LR) were applied. Furthermore, to
assess the performance of the machine learning models, two di↵erent performance
calculation measurements were taken into consideration: the Matthews correlation
coe�cient (MCC) and accuracy.

The decision tree algorithm surpassed all the other algorithms in finding out Long
Method code smell with an accuracy of about 95.9% and an MCC score of about
0.90. On the other hand, Random Forest was the best in recognizing Large Class
code smells, with an accuracy of 92.7% and an MCC result of about 0.77. However,
it was quite strenuous to recognize the Large class code smell more than the Long
method code smell.

2.10 Code Smell Detection Using Ensemble Ma-
chine Learning Algorithms

Seema et al. [37] discuss that code smells in software can be detected using ensem-
ble machine learning and deep learning algorithms. According to them, previous
researchers did not consider the e↵ects of various parts of metrics on accuracy while
finding out the code smells. However, Seema et al. [37] fulfilled this requirement
through their research, as they considered all the subsets of metrics, applied the
algorithms to each group of metrics, and found their e↵ects on the model’s perfor-
mance and accuracy. Seema et al. [37] expose code smells by building a model.
At first, they figured out the datasets of code smells and applied min-max normal-
ization to scale features. Then, the SMOTE class balancing procedure is applied
and on the resultant dataset, Chi-Square FSA is implemented to extract the best
features. Later, the datasets underwent several ensemble ML techniques, and to
improve the performance of the algorithms, cross-fold validation was done. Lastly,
di↵erent kinds of performance calculations like F-measure, sensitivity, Cohen Kappa
score, AUC ROC score, PPV, MCC, and accuracy were calculated to examine the
model’s performance.

Four types of code smell, like God Class, Data Class, Long Method, and Feature
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Envy in the Java programming language, were taken into consideration for detecting
code smells. The class-level datasets were God Class and Data Class and on the
other hand, the method-level datasets were Feature Envy and Long Method. To
rescale the feature values of the datasets between 0 and 1, a min-max normalization
process was carried out. Every collection of each dataset was balanced using the
SMOTE technique. It is done to enhance oversampling at random. Pre-processing
measures like the Chi-square-based feature selection approach are used to find the
finest metrics to build the ensemble machine learning models. In the categorical
dataset, Chi-square FSA is typically used. Chi-square examines the relationship be-
tween features to assist in choosing the best ones. After pre-processing the datasets,
Seema et al. applied five ensemble machine learning algorithms such as Adaboost,
Bagging, Max Voting, Gradient Boosting, and XGBoosting, and two deep learning
algorithms, Artificial Neural Networks and Convolutional Neural Networks, to the
datasets. In detecting the code smells of each type, all of the algorithms competed
with each other to be the most accurate. At first, for detecting data class smell
XGboost was the most accurate, with 99.80% accuracy. Secondly, all five ensemble
learning techniques were the most accurate, with an accuracy of 97.62% in detecting
the God class code smell. Moving on, AdaBoost, Bagging, and XGBoost had an
excellent accuracy of 100% in detecting Feature Envy. Lastly, AdaBoost, Gradient
Boosting, and XGBoost also had a remarkable accuracy of 100% in Long Method
smell detection.

In the second half of their project, Seema et al. [37] computed performance measures
to compare the performance of machine learning techniques. The performance mea-
surements are as follows, the number of instances of code smell that machine learning
techniques correctly identify is measured by positive predictive value (PPV). Sensi-
tivity gauges how frequently machine learning techniques identify instances of code
smell. Positive predictive value (PPV) and sensitivity are measured harmonically
by the F-measure, which represents a balance between their values. Based on the
percentage of correct and incorrect classifications, the AUC ROC score is used to
evaluate the e↵ectiveness of a classification model. In this way, Seema et al were
able to examine code smells in software.

2.11 Restructuring Programs by Tucking State-
ments into Functions

In order to restructure programs by breaking up huge functions into smaller ones,
a transformation known as tuck is presented in the paper ”Restructuring programs
by tucking statements into functions” by Arun Lakhotia and Jean-Christophe De-
prez[1]. Program readability and maintainability are intended to be enhanced by
this transformation, which modifies a program’s underlying structure without af-
fecting its functionality. The Wedge, Split, and Fold are the three primary phases
in the tuck metamorphosis.

In the Wedge phase, a selection of statements from a slice that include linked calcu-
lations and have the potential to build a meaningful function are chosen. To build
a new function, this subset of statements is then extracted. The Split step allows
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functions to be created in a more organized way by splitting o↵ interleaved calcula-
tions through the duplication of code segments. Lastly, the program is restructured
by calling the newly formed function in place of the extracted subset of statements
in the Fold phase.

This restructuring technique’s requirement to handle the complexity that develops
when programs change over time and lead to deteriorating structures is what drives
it. The tuck transformation reduces program complexity and makes maintenance
and future upgrades easier by dividing big functions into smaller, more coherent
parts.

Within the framework of similar studies, the study examines the work of other schol-
ars, including Notkin, Bowdidge, Sneed, Griswold, Kang and Bieman, and Kim et
al. Additionally, by concentrating on coherence and dividing connected sections of
code into distinct functions, these academics have investigated restructuring strate-
gies. But by tucking statements inside functions, the tuck transformation (Lakhotia
and Deprez)[1] presents a novel way to restructure programs.

The study also emphasizes the possible uses of automated restructuring methods
that use the tuck transformation. By automatically detecting code portions that
need to be restructured and carrying out the appropriate modifications, these tools
can aid in lessening the degradation of a program’s structure. Alternatively, pro-
grammers can choose and perform the restructure procedures during ordinary code
revisions by interactively integrating the tuck transformation into interactive devel-
opment environments.

To sum up, Lakhotia and Deprez’s [1]tuck transformation o↵ers a useful technique
for reorganizing programs by breaking down big routines into smaller, easier-to-
manage components. This transformation advances the general objective of software
reengineering and restructuring by tackling the complexity and maintainability chal-
lenges associated with developing software systems. The methodology described in
this work provides useful insights on program restructuring strategies that might
improve the robustness and lifespan of software systems.

2.12 Identifying Fragments to Be Extracted from
Long Methods

Enhancing software quality, maintainability, and extensibility is largely dependent
on refactoring, and software maintenance and evolution are essential components of
software development. Long and complicated procedures that are di�cult to com-
prehend, maintain, and expand are a prevalent problem in software development.
Long procedures can provide di�cult-to-understand and alter code, which hinders
developers’ ability to work e↵ectively.

Long methods became a concern, therefore the idea of ”bad smells” in code was
invented, with one of the most often found bad smells being ”long methods.” The
idea of keeping functions focused and brief is broken by long methods, which makes
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it more di�cult for developers to understand the code’s intention and how it accom-
plishes its goals. The software system’s progress and upkeep may be hampered by
its complexity.

It has been suggested that lengthy procedures be divided into small, more manage-
able chunks using refactoring approaches like the Extract Method. Although certain
code fragments may be automatically removed by current refactoring tools, it still
needs human interaction to decide which portions of a lengthy procedure should
be extracted. There are ine�ciencies in the refactoring process as a result of this
laborious and prone-to-error manual method.

To address these issues, academics have put forth a strategy to suggest extractable
segments from lengthy procedures, to automate and streamline the refactoring pro-
cedure. With the use of a prototype tool named AutoMeD, the methodology helps
developers find extractable pieces within lengthy procedures, which lowers the cost
of rewriting di�cult and lengthy code.

An evaluation of the suggested method on a challenging open-source project shows
encouraging reductions of over 40% in refactoring expenses. AutoMeD provides a
workable solution to the issue of lengthy procedures in software development, en-
hancing code readability, maintainability, and overall program quality by automat-
ing the detection of extractable pieces. In addition, the approach’s accuracy, e↵ect
on refactoring costs, and influence on software quality have been the main areas of
attention for the evaluation. By looking into these areas, researchers want to present
empirical proof of how well the suggested strategy works to solve the problems that
lengthy procedures in software systems present.

The work on extracting recommended parts from lengthy procedures is a significant
addition to the field of software reorganization and maintenance[4]. Developers
may improve the quality and maintainability of their software systems and, in turn,
create more e↵ective and e�cient software development procedures by providing a
methodical and automated way to locate and remove code fragments.

2.13 Machine Learning-Based Refactoring Papers:
Part I

Managing code quality high in the software industry is very important. Dealing with
code smell plays a key part of it. While compiler based IDE showed some e↵ective-
ness on detection and refactoring of code smell, machine learning based approaches
have become a more e�cient approach. This literature review on five papers high-
lights why machine learning-based refactoring is preferred over compiler-based ap-
proaches, particularly for our research on enhancing software quality through Python
code smell detection and refactoring long methods using the Extract Method algo-
rithm.

The study on the E↵ectiveness of Supervised Machine Learning Algorithms in Pre-
dicting Software Refactoring by Maur�ıcio Aniche , Erick Maziero et al.[30] describes
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the power of machine learning systems for software refactorings. The authors used
a dataset of over two million refactorings from 11,149 real-world projects from the
Apache, F-Droid, and GitHub ecosystems to train six di↵erent machine learning al-
gorithms which are Neural Network, Support Vector Machine, Naive Bayes, Decision
Trees, Random Forest, and Logistic Regression. With an accuracy that is frequently
greater than 90%, shows how well the models can predict 20 distinct refactoring ac-
tions at the class, method, and variable levels. Each algorithm’s precision, recall
(98% and 87%, respectively) and accuracy metrics are carefully examined to demon-
strate how well it can find refactoring possibilities.

The study “A Survey of Deep Learning Based Software Refactoring” [44]emphasizes
the deep learning applications in code smell refactoring. The majority of the study
focused on the detection of code smell (56.25%), refactoring solution (33.33%) and
6.25% and 4.17% were towards the end-to-end code transformations refactoring and
the mining of refactorings. The study also shows deep learning techniques including
CNN, RNN, and GNN and notes their contributions in various tasks. And also man-
ual constructed heuristics is needed in traditional refactoring where deep learning
techniques reduce these requirements.

The study on method-level refactoring prediction in five open-source Java projects
emphasizes on refactoring opportunities with machine learning techniques[27]. The
study highlights the high accuracy rate of classifiers like RUSBoost and SMOTE
with 98.47% . Logistic Regression achieved an accuracy of 98%. Naive Bayes with
an accuracy of 92.4%. BayesNet demonstrated an accuracy of 84.6% and RBFN
(Radial Basis Function Network) achieved an accuracy of 99% and Random Forest:
Demonstrated an accuracy of 98.8% where AdaBoost and LogitBoost demonstrated
an accuracy of 97.8% and 98.2% respectively. ANN+GD (Artificial Neural Network
with Gradient Descent) attained an accuracy of 99% and ANN+LM (Artificial Neu-
ral Network with Levenberg-Marquardt) with an accuracy of 98.4%.

Parveena Sandrasegaran and Sivakumar Vengusamy’s paper, ”Enhancing Software
Quality Using Artificial Neural Networks to Support Software Refactoring,”[34] fo-
cuses on the application of artificial neural networks (ANN). It shows the enhance-
ment of software quality by emphasizing in the identification and terminating of
code smells that creates barriers in software development. It also showcases the
ANN model’s ability to measure software quality characteristics like maintainabil-
ity, e�ciency, and reusability with an 85% accuracy rate. Furthermore, the ANN
model detects code smells with an accuracy of 87% from SciTools and metric fac-
tors like Cyclomatic Complexity (CC) data. Moreover, 15% performance boost was
shown when compared to typical Machine Learning models in software quality met-
rics prediction. Therefore, the ANN model’s ability to e↵ectively and methodically
improve software quality is demonstrated by its ability to detect and minimize code
smells.

The study of Dimah Al-Fraihat et al. focused on automatic machine learning (Au-
toML) [43]approaches for detection of feature envy code smells and refactoring us-
ing move method. The ”WeightedEnsemble L2” model is used in this paper for
automated identifying and categorizing feature envy cases in software systems. The
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model shows an accuracy gain from 58% to 77% in successfully detecting code smells.
The model’s high predictive power is further highlighted by its macro average F1-
score of 57%.

In conclusion, the advancement of software engineering has emerged with the help of
various machine learning techniques. Compared to compiler based refactoring, these
techniques o↵er more accurate, e↵ective, and automated solutions, which increases
productivity during development and lead to better code quality and maintainabil-
ity. These models’ adaptability and strong performance in a variety of scenarios and
projects demonstrate their usefulness in real-world situations and their capacity to
revolutionize software development methodologies.

2.14 Machine Learning-Based Refactoring Papers:
Part II

Software refactoring, which aims to improve a program’s internal structure without
changing its external behavior, is a crucial approach in software engineering. In-
tegrated Development Environments (IDEs) based refactoring techniques most of
the time depends on guidelines and heuristics. These techniques are not able to
understand the dynamic and complicated software systems. With the help of ma-
chine learning based refactoring we can solve these problems. This analysis based
on 5 papers highlights the findings and advantages of using machine learning for
code smell refactoring. ML has improved the precision, e↵ectiveness, and range of
refactoring techniques by working on numerous datasets and e�cient algorithms.

The study on a machine learning approach to software model refactoring[40] show-
cases the detected functional decomposition instances in UML class diagrams with
a high accuracy rate of more than 90%. Functional decomposition gave their model
an F1 score of 0.90, recall of 0.93, and accuracy of 0.87 when it came to labeling
test UML class models as faulty. The algorithm is empirically evaluated and shows
high accuracy. Compared to standard refactoring techniques that target specific
smells and result in a cycle of quality evaluation, refactoring, and synchronizing the
side-e↵ects, the main addition is the innovative perspective on design defects.

The study on ”An Empirical Study of Refactorings and Technical Debt in Machine
Learning Systems” [35]describes the link between refactorings and technical debt. It
describes how refactoring can lead to technical debts in the software industry. The
aim of the paper is to guide how to keep a balance between refactoring and technical
debt. It shows the consequences of machine learning based refactoring that is related
to technical debts. It also provides important insights for managing technical debt in
machine learning systems by identifying common refactoring patterns and technical
debt categories through the analysis of 26 projects totaling over 4.2 million lines of
code.
The study emphasizes on developers’ abilities and intuition and the di�culties faced
by the software developers are also discussed. The paper[29] used a deep learning
technique which is the gated recurrent unit (GRU). The primary goal of this is to
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find class-level code that needs refactoring. The dataset of the model was even open-
source Java projects. In the experimental study,[29] the impact of data sampling
on the model’s performance was investigated and was carried out both before and
after the dataset was balanced. The results were remarkable for the prediction of
code restructuring performed admirably. The main contribution of the research is
an analysis of how well deep learning methods, in particular the GRU, work for
developing prediction models for class-level refactoring. It highlights how special it
is to do this using the GRU algorithm and the evaluation of the selected Java apps.
This study[11] showcases a search-based learning algorithm for software refactoring
where the method uses an Artificial Neural Network (ANN) as a fitness function. In
comparison to current software restructuring strategies, the methodology suggested
in this work has a number of advantages. In terms of precision and recall, it per-
forms better than current methods, to start. While other techniques only achieve
65% and 74% precision, the methodology o↵ers refactorings that are already per-
formed by software development teams to the following version with an average
precision of 80%. Additionally, the suggested method shortens CPU times and in-
creases refactoring e�ciency. When compared to other search-based methods, such
genetic algorithms and interactive genetic algorithms, the methodology performs
better. Finally, prospective users of the refactoring tool evaluated the technique
and found positive results in terms of producing workable and e↵ective refactorings.
These benefits demonstrate the suggested approach’s e�cacy and e�ciency in com-
parison to other methods.

The paper[19] emphasizes a machine learning-based approach for code smell severity
classification rather than direct code refactoring where conventional IDE refactor-
ing tools provide automatic assistance for implementing pre-established refactoring
procedures to enhance the quality and maintainability of code. Inside the IDE en-
vironment, developers may use these tools to apply refactoring operations (such as
Extract Method, Rename Variable, etc.) to their codebase. The paper[19] used
data-driven techniques for the classification of the severity of code smells based on
metrics where IDE rely on static analysis to suggest and apply refactoring.

In conclusion, machine learning based code smell refactoring shows a significant im-
provement in performance and achieved a high accuracy. Machine learning models
such as GRU, ANNs have showcased their ability to correctly detect complex code
flaws and technical debt in software systems. These models o↵er automated, ef-
ficient, and data-driven approaches that enhance the quality, maintainability, and
scalability of software. Developers can achieve more e↵ective refactoring outcomes
by using machine learning techniques for code smell detection and refactoring.
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Chapter 3

Detailed Literature Review on
Compiler Based IDE Plugins

3.1 WitchDoctor: IDE Support for Real-Time
Auto-Completion of Refactorings

The WitchDoctor paper[6] presents a system that eliminates the cognitive prereq-
uisites required by programmers to start refactorings and thus attempts to resolve
the problem of underused IDE-provided automated refactoring support. It works
by observing the programmer’s coding activity in real time, detecting refactoring in
progress, and completing it before the programmer can finish. This is to prevent
programmers from needing to know a particular refactoring operation to be refac-
tored, the name of the refactoring, and how to apply it from the IDE.

The WitchDoctor paper describes[6] a system that gets rid of the mental prepara-
tions that coders need to begin refactorings. This tries to solve the issue of automatic
reworking support that isn’t used enough by IDEs. It watches what the programmer
is doing with their code in real-time, finds rewriting that is happening, and finishes it
before the coder can. This is done so that coders don’t have to remember the name
of the change, the action that needs to be refactored, and how to use it from the IDE.

WitchDoctor’s ability to automatically find and complete refactorings in real time
is helpful for both new and experienced coders. While writing, beginners can get
relevant ideas and help, while experts can work faster without being interrupted by
directly getting modification tools. The system’s interface suggests finished refac-
torings to coders, and they can easily accept or reject these ideas while they code.
Programmers of all skill levels may benefit from WitchDoctor’s real-time automatic
refactoring identification and completion. Experts may work uninterrupted and
more e↵ectively by manually using refactoring tools, while novices can get con-
textual ideas and advice while coding. Programmers are presented with finished
refactorings via the system’s interface, which they can easily accept or reject while
coding.

The article[6] highlights the importance of interface design to help e↵ectively share
refactoring ideas with programmers. It describes plans for developing prototypes
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of beginner and expert programmer-targeted interfaces, as well as conducting more
practical evaluation studies of WitchDoctor. The system is based on a selective
rollback approach relying on textual di↵erencing, delayed identity of AST node
mapping, declarative specification language, pattern matching algorithms, and se-
lective rollback to serve refactoring proposals, e�ciently, consistently, and flexibly.

WitchDoctor is a giant step for automated refactoring support, in the path to facil-
itate refactoring tasks (reduce-time e↵ort consuming) and makes it easier for pro-
grammers to accomplish more reliable, useful work. We intend to study user inter-
face designs in more detail, discover real-world refactoring practices, and improve
the system based on user feedback and usage scenarios.

3.2 Compiler Driven Code Comments and Refac-
toring

The paper[5] showcases the di�culties that compilers have in leveraging full opti-
mization potential in the code fragments and raises the fact that programmers are
the ones who have to further ensure parallel software development is e�cient and
correct.

The goal of the toolset described in the paper is to assist programmers in understand-
ing the design margins that they need to comply with to exercise these optimizations
and to help them narrow a subset of the barrier binaries for automated treatment.
Incorporating the compiler with the IDE and making the code comments, which
helps the developer understand and fine-tune the code for multi-core architectures,
are also a part of the toolset. Today, the paper is attempting to take an approach
that has evolved the role of the compiler from merely a passive optimizer into an
active guide, working with programmers to produce better-optimized code.

One of the image processing benchmarks was used to evaluate the e�cacy of this
complete toolset to enable significant speedups by automatic parallelization com-
pared to traditional compiler methodologies mainly for testing purposes at this stage.
The results highlight the power of the toolset for refactoring code for amenable op-
timization and improved acceleration on multi-core architectures. Additionally, the
authors also provide the trajectory of further investigations: supporting more kinds
of analysis; providing more refactoring; and prioritizing the code comments to be
extracted based on the execution frequency and availability for automated refactor-
ing. We also intend to publish the toolset as open-source software free for all once
the prototype implementation is more mature.

We believe the paper is a significant advance for the parallel software development
field as it introduces a new marginal methodology that helps programmers optimize
their code for multi-core architectures with the help of advanced compiler analysis
and refactoring advice. The toolset appears to be building up a strong foundation
for improved intelligent code optimization and performance, promising a brighter
and more e�cient parallel software development methodology.
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3.3 Large-Scale Automated Refactoring Using ClangMR

The ”Large-Scale Automated Refactoring Using ClangMR” [10]method refactors
C++ code quickly and e↵ectively using the Clang compiler framework and the
MapReduce parallel processor. This helps with the problems that come with main-
taining big codebases. The authors stress how important it is to keep current code
up to date so that it can be used for new features, old interfaces can be removed, and
technical debt can be managed. The tool was made because it’s hard to constantly
update large chunks of code in a semantically safe way, especially as codebases get
bigger.

The ClangMR system is characterized by its high level of parallelization and seman-
tic awareness. It utilizes the semantic knowledge derived from the C++ abstract
syntax tree (AST) of the Clang compiler to make educated judgments during the
editing process. ClangMR uses the MapReduce architecture to distribute its analy-
sis across numerous machines at the same time. This allows for e�cient processing
of sophisticated transformations on large amounts of C++ code in just a few min-
utes. This approach enables code maintainers to e↵ectively restructure extensive
codebases while guaranteeing semantic accuracy.

The study[10] highlights the distinctive characteristics of ClangMR, including its
versatility, e�ciency, and applicability to industrial use cases, setting it apart from
conventional regular-expression-based matching tools and constrained refactoring
tools commonly found in integrated development environments like as Eclipse. The
authors further analyze the scaling di�culties faced by competing tools, highlighting
ClangMR’s ability to handle large-scale refactoring assignments. They provide an
example of a real-world scenario where ClangMR successfully modifies over 35,000
function call sites across 100 million lines of code. In addition, the article o↵ers
valuable information about how ClangMR is used at Google, showcasing its e↵ec-
tive use in updating callers of outdated APIs and revitalizing old C++ code to meet
current standards. The study showcases the e�cacy of ClangMR in managing ex-
tensive refactoring jobs, including the capability to iterate transformations and keep
up with developing codebases.

In short, the literature review of ”Large-Scale Automated Refactoring Using ClangMR”
characterizes the relevance of the system in the context of mitigation of problems
with maintaining and moderating vast C++ codebases ClangMR combines Clang
compiler’s ability to process semantics and features of MapReduce to provide a use-
ful and versatile tool for code maintainers to quickly and safely refactor code at
scale.

3.4 cASpER: A Plug-in for Automated Code Smell
Detection and Refactoring

De Stefano et al. The paper ”cASpER: [32]A Plugin for Automated Code Smell
Detection and Refactoring” introduces a new way for automated code smells detec-
tion and refactoring of a code using the plugin for IntelliJ IDEA. Although the issue
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many developers face is how to keep their code quality as high as possible while tick-
ing o↵ all the boxes on their to-do list and this often leads to code smells, which are
poor design or implementation choices that can a↵ect your program comprehension,
maintainability, and team productivity.

The research[32] examines the prior works in this line of software engineering re-
search, particularly in object-oriented code refactoring as well as the exploitation
of both structural and semantic measures to improve software modularization. In-
spired by these prior works, the paper provides developers with a tool that not
only identifies code smells but also suggests automated refactoring opportunities for
better-quality source code.

In this manner, cASpER guides developers on a code smell identification and refac-
toring adventure by o↵ering them visual and semi-automated support for a wide
range of code smells, from feature envy to misplaced classes, blobs, and promis-
cuous packages. Developed to integrate directly into IntelliJ IDEA, the popular
integrated development environment, the plug-in provides a user-friendly interface
for code analysis and refactoring suggestions that do not change the external be-
havior of the source code. The accuracy of the code smell detection and refactoring
approaches is key for the tool to be e↵ective, as they were previously presented as
well as validated through experiments in other research papers. With that in mind,
the goal of cASpER was to remove the manual work involved in improving code
quality by automating the refactoring process to encourage developers to address
code smells proactively instead of being forced to.

To sum up, cASpER is a valuable addition to the research area of automated software
engineering for providing a pragmatic approach of detecting and refactoring code
smells interactively and e�ciently. The plug-in could have a positive e↵ect on how
software is developed and the quality of the code. To further our study, we should
look at how developers respond to cASpER’s suggestions and add more code smells
and detection methods to the tool.

3.5 A Review-based Comparative Study of Bad
Smell Detection Tools

The paper ”A Review-Based Comparative Study” [17]presents a systematic litera-
ture review (SLR) as the motivation for the work, which focuses on the detection of
bad smells in software systems. The study’s objective is to identify and document
the tools used for bad smell detection, which are indicators of potential quality prob-
lems in software design and code. The authors utilized a thorough set of inclusion
and exclusion criteria to choose pertinent tools and papers for the study, following
multiple rounds of refinement and data extraction and conducting a thorough review
of the papers.

The SLR protocol followed in the study involved defining research questions, in-
clusion and exclusion criteria, and search strategies to identify relevant literature.
The authors utilized various electronic data sources to gather a comprehensive set
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of papers published between 2000 and 2015, focusing on bad smell detection tools in
the field of computer science. Through a meticulous screening process, the authors
identified 84 bad smell detection tools for further analysis.

A key element of this study was the categorization and systematization of features
of the identified tools. One of the limitations faced by the authors was that, con-
cerning a few of the tools, complete information could not be obtained concerning
what types of bad smells they detect and how they detect these bad smells. This
made it di�cult for the authors in some cases but they did their best to collect all
of the usable data for their review of the tools. It also contains a comparison results
of four bad smell detection tools when applied to the detection of large-class and
long-method bad smells. It showed agreement, recall precision rate, and usefulness
of each tool giving us an idea of how e�cient each tool is in detecting specific bad
smells.

For the detection of large-class bad smells: inFusion: detected 0 instances in JUnit,
1 instance in MobileMedia JDeodorant: Detected 88 instances in JUnit, 11 instances
in MobileMedia PMD: Detected 12 instances in JUnit, 1 instance in MobileMedia
JSpIRIT: Detected 6 instances in JUnit, 2 instances in MobileMedia.

For the Long Method foul smell detection, JUnit detected 0 instances in Fusion,
2 instances in MobileMedia; 48 instances in JUnit, 12 instances in MobileMedia;
JUnit detected 0 instances in PMD, 3 instances in MobileMedia; JUnit detected 0
instances in JSpIRIT; 3 instances in MobileMedia; and 12 instances in JDeodorant.

The results show that JDeodorant found the most Large Class and Long Method
instances in both software systems. This shows that it is good at finding these
unpleasant smells. It was also shown that PMD could accurately recognize large
classes in the MobileMedia system, reaching 100% accuracy. However, JDeodorant
did worse than PMD and JSpIRIT in both the big class and long method when it
came to recall and accuracy.

In summary, this study provides an extensive overview of the tools to identify bad
smell detection tools, what bad smell detection tools check, and how well they are
good at delivering common real-world software quality problems. Its methodological
concentration assures that the results are valid and essential. So it serves students
and practitioners as a good reference on software maintenance and quality assurance.

3.6 Refactoring Tools and Complementary Tech-
niques

Refactoring Tools and Complementary Techniques—Automated Software Engineer-
ing This paper by Martin Drozdz, Derrick G. Kourie, Bruce W. Watson, and Andrew
Boake[2] covers how refactoring plays a crucial role in enhancing software design and
maintaining the code’s maintainability. The authors note the di�culties when work-
ing with poorly designed software, demonstrating how di�cult it is to modify code
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and add features because of coupling. These folks would go on to claim that only
by routinely refactoring enterprise systems can you e↵ectively tackle all of the afore-
mentioned concerns in large systems.

Developers present refactoring as a valuable practice that enhances code design
and cleanliness without changing its behavior. The study includes a comprehensive
survey of refactoring tools available in popular commercial and open-source Inte-
grated Development Environments (IDEs) such as IntelliJ’s IDEA, IBM’s Eclipse,
and Sun’s Netbeans. The authors[2] also discuss the potential of automatic code
smell detection through static code analysis to identify targets for refactoring.

The paper’s audience has valid concerns related to implementing compiler refactor-
ings as an automatic or mostly automatic process because humans need to ensure
that the refactored code is correct. It cites Mens (2004) to emphasize that refac-
toring without developer intervention is dangerous because automated tools may
make the situation even worse by performing unnecessary refactorings that decrease
overall code quality. In addition to those, the authors write about the advantages
of a frictionless design process for developing software and how refactoring helps to
transition from legacy design models to modernized models being flexible to adapt
reusable components with low maintenance cost.

”Refactoring Tools and Complementary Techniques” Analysis IntelliJ IDEA:

• Outperforms Eclipse in ease of use and productivity for refactoring.

• O↵ers around 30 similar refactorings.

• Features nearly 500 static code analysis tools.

• High accuracy in detecting code smells and potential refactoring areas. Eclipse:

• Similar to IDEA in refactoring tool landscape.

• surpasses Eclipse in ease of use and productivity.

• Does not provide specific details on refactoring tool accuracy.

Netbeans:

• Criticized for limited refactoring capabilities.

• Lack of support for essential refactorings raises concerns about the IDE’s ef-
fectiveness in identifying and addressing code smells.

Overall, the paper o↵ers recommendations on how IntelliJ’s IDEA, with its perfor-
mance and concurrency accuracy from its numerous sets of static code analyses, can
be advantageous in refactoring endeavors. Eclipse seems to have a satisfactory per-
formance, unlike Netbeans, which seems to be a bit slow and incorrect, especially in
areas of refactoring. According to the information presented in the paper, develop-
ers who are in search of e↵ective and accurate methods may conclude that IDEA is
indeed a suitable option to explore in terms of the reaction to the refactoring tools.
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3.7 On Experimenting Refactoring Tools to Re-
move Code Smells

The paper “On Experimenting Refactoring Tools to Remove Code Smells” by Francesca
Arcelli Fontana, Marco Mangiacavalli, Domenico Pochiero, and Marco Zanoni from
the University of Milano Bicocca, Milan, Italy, [14]describes an experiment on refac-
toring tools on how to remove code smells with the aim of enhancing the source code
quality of software projects. The authors designed several experiments normalizing
code smells with four refactoring tools and evolved their experiences with such an
approach.

Both authors stress the importance of refactoring, which is aimed at modifying the
existing code for the sake of making it more e↵ective and safe, as discussed by
Fowler. In this context, we view refactoring as an essential activity that helps to
deal with code smells and improve the quality of software. However, resistance to
change indicated by developers’ failure to refactor code can cause code smells to be-
come long-lasting and disrupt software evolution. The authors, in their study, have
used four refactoring tools: Eclipse, IntelliJ IDEA, RefactorIT, and JDeodorant,
to identify the e�cacy of the tools in eliminating code smells. The team realized
that each of the tools had advantages and disadvantages that they needed to con-
sider. While discussing this, they observed that JDeodorant is capable of detecting
and recommending correct refactorings of code smells but faced certain challenges
when using it. Users have appreciated Eclipse and RefactorIT for their clear menus
containing refactoring possibilities, while IntelliJ IDEA o↵ered numerous features
regarding the analysis and refactoring of the programs.

The study[14] recognizes the general validity threats in this type of research by
conducting experimentation only with a few selected systems and tools. There are
several directions for further research: the authors would like to investigate more
systems in detail and broaden the choice of refactoring tools that help to eliminate
code smells.

In conclusion, the paper o↵ers insights into the use of refactoring tools to eliminate
code smells in software development projects. The paper emphasizes the importance
of selecting the right tool based on specific criteria and the need for further research
in this field. The authors’ study can help developers choose more suitable tools for
refactoring and enhancing the quality of their code. In summary, the paper adds
to the current literature on software maintenance and refactoring by presenting
actionable insights and strategies for software developers and researchers keen on
improving software quality by eradicating code smell.

3.8 Parallelizing More Loops with Compiler Guided
Refactoring.

“Parallelizing More Loops with Compiler-Guided Refactoring”[7] focuses on the im-
portant problem of automatic parallelization in parallel leagues. However, it also
emphasizes how challenging and delicate this is, pointing out that there are quite a
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number of issues that can impinge or halt Automatic Parallelization in real applica-
tion. The review brings up a comparison of Intelse and IBM production compilers
based on a study that shows that, while total vectorization can be quite high at the
collective level, many individual benchmark loops are only partially vectorizable.
This disparity puts into picture the di�culties faced by the compilers in tuning the
code for concurrent process operation.

As a result, the review stresses the fact that parallel applications unmask loop-level
parallelism as opposed to instruction-level parallelism. It notes that current com-
pilers frequently generate reports that contain information on compilation concerns
while allowing the programmer to determine particular source code elements that
hinder optimization. This absence of feedback calls for far more sophisticated in-
teractive compilation systems, which will be very helpful in helping programmers
transform their code in a manner amicable to auto-parallelization.

Using such semi-automatic parallelization methodology jointly with special target
optimizations, the review emphasizes that application performance might be boosted
dramatically. Through addressing these key points, a basis for the proposal and as-
sessment of the presented interactive compilation feedback system in the paper is
the literature review, desiring to assist programmers in harnessing the maximum
benefits of loop-level parallelism in their parallel computations.

3.9 A Comparative Study on Code Smell Detec-
tion Tools

The paper “A Comparative Study on Code Smell Detection Tools” written by Almas
Hamid and his collaborators, lecturers of the University of Sargodha in Pakistan,[9]
provides comprehensive information on the existing methods used in identifying code
smells in software development. The findings of the study reveal that refactoring is
a valuable activity that can be used to increase the readability and maintainability
of computer programs. Code smells are those signs or markers that suggest the
presence of certain kinds of errors or problems in the code base; with the help of
recognizing and eliminating these smells, the working developers tend to enhance
the quality of the output of the software.

For example, Steve et al. examined code smells and processed them according to
the taxonomy discussed in the relevant literature. Their study also established that
there were di↵erences in the level of refactoring that was needed to eliminate various
categories of code smell. The study also highlighted the fact that some of the code
smells are actually misleading, which means they can give a skewed understanding
of the e↵ort needed to perform the refactoring.

In addition, Foutse et al. investigated the correlation between code smells and soft-
ware change-susceptibility. Their study conducted showed that classes with smell
are more likely to be changed compared to classes with no smell. Through the as-
sessment of the DECORE strategy for code smell identification, the study o↵ered
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knowledge on how di↵erent code smells can influence software evolution processes.

Moreover, Fontana et al. shared a report on code smell detection tools, as well as a
specific analysis of the e↵ectiveness of those tools regarding the Gantt Project ap-
plication. The authors highlighted the need to gain access to the rules of detection
as well as thresholds of metrics within code smell detection tools to enhance their
capability to identify and remedy flawed structural designs of code.

In conclusion, the papers reviewed above provides the right background needed to
understand the location of the current study with regard to research on code smell
detection and refactoring. Thus, the paper provides the theoretical background for
the further comparison of the scientific results related to the detection of code smells
based on the analysis of the works of other authors and presents practical suggestions
that may be of interest to professionals in terms of maintenance and improvement
of software quality within the field of software engineering.

3.10 Ten Years of JDeodorant: Lessons Learned
from the Hunt for Smells

The tool JDeodorant is the subject of the study ”Ten Years of JDeodorant: Lessons
Learned from the Hunt for Smells”[26]. The authors provide methods for proposing
and implementing refactoring. In their reflections, they also discuss how JDeodor-
ant evolved, how to propose and implement refactoring possibilities, and how it has
a↵ected software engineering practice and research. The study also explores the
field’s competitive works, lessons gained, and the value of tools like JDeodorant in
enhancing the quality of code and design for maintainable software projects.

JDeodorant [26] focuses on figuring out which refactorings to apply, where in the pro-
gram to apply them, preserving behavior, implementing the refactorings, evaluating
the e↵ect on quality attributes, and preserving consistency between the refactored
code and other software artifacts. Unlike other IDE refactoring tools, JDeodor-
ant o↵ers tailored solutions for every code stench, taking into account the unique
features of the underlying design or code issue. Compared to IDEs’ general ap-
proaches, JDeodorant’s customized method enables it to provide more focused and
e�cient refactoring advice. Moreover, JDeodorant incorporates refactoring mecha-
nisms, automated Javadoc comment updating, preconditions to maintain behavior,
and algorithms for detecting code smell.

Additionally, JDeodorant may be easily integrated into the development environ-
ment where developers work because it is available as an Eclipse plug-in. Developers
may now access and implement refactoring ideas right within their familiar IDE en-
vironment, which improves ease and usefulness. In addition, the tool’s minimum
installation and configuration e↵ort facilitates its acceptance by academics, prac-
titioners, educators, and students by further streamlining the user experience. In
conclusion, JDeodorant is more e↵ective and superior to traditional IDE refactoring
tools in terms of enhancing code quality and streamlining the refactoring process
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because of its customized strategies for code smells, extensive support for refactoring
activities, integration as an IDE plug-in, and user-friendly interface.
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Chapter 4

Work Plan

Figure 4.1: Flow Chart
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Chapter 5

Dataset

5.1 Primary Dataset

In constructing our initial dataset, we adopted a selective approach by focusing on
GitHub project repositories with an impressive following, specifically those garner-
ing more than 1000 stars. This criterion ensured the inclusion of projects widely
recognized and embraced by the programming community. Among the notewor-
thy projects featured in our primary dataset are renowned Python libraries such
as Keras, Django, Seaborn, Scipy, and more. These selections were made based on
their popularity and significance within the Python programming ecosystem, con-
tributing to a diverse and representative collection.

Ultimately, our primary dataset comprises 50 carefully curated project repositories.
Notably, one of these repositories is a project of our own, adding a valuable dimension
to our research. This intentional inclusion allows us to explore code smells within the
context of our project, providing insights and perspectives that contribute uniquely
to the overall findings of our research paper.

5.2 Secondary Dataset

In leveraging the Pysmell tool, as detailed in our literature review, we employed
it to construct our secondary dataset. Please refer to the comprehensive literature
review (2.3) for an in-depth description of the tool. The architecture of Pysmell is
outlined below:

Figure 5.1: Architecture of Pysmell
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Upon inputting our primary dataset into the Pysmell tool, it precisely processed the
data, generating insightful information. Specifically, it produced a set of comma-
separated files for 33 out of the 50 projects in our primary dataset. The tool intri-
cately parsed and analyzed each project, focusing on ten distinct code smells: Large
Class (LC), Long Method (LM), Long Message Chain (LMCS), Long Parameter
List (LPL), Long Lambda Function (LLF), Long Scope Chaining (LSC), Long Base
Class List (LBCL), Long Ternary Conditional Expression (LTCE), Complex List
Comprehension (CLC), and Multiply Nested Container (MNC).

For each code-smell category, the Pysmell tool generated seven comma-separated
files. These files provided valuable insights, encompassing essential details such as
the project name, the names of Python files within the project, the relevant metric,
and the instances of code smells associated with the specified metric. This careful
breakdown ensures a comprehensive understanding of the code smells identified,
enabling us to conduct a thorough and nuanced analysis of our secondary dataset.

5.3 Tertiary Dataset

In the culmination of our research e↵orts, we curated our final dataset by focusing
on five distinct code smells: Large Class (LC), Long Method (LM), Long Message
Chain (LMCS), Long Parameter List (LPL), and Long Lambda Function (LLF).
Each code smell was initially stored in its own dedicated comma-separated file. To
streamline our analysis, we strategically merged all these code smells into a sin-
gle comprehensive comma-separated file. This resulted in the creation of a dataset
where each row can be associated with one or more class. This area of problem is
known as multi-lablel classification [3]

During this merging process, a notable observation surfaced: the incidence of each
code smell per project was relatively low, albeit substantial enough to warrant con-
sideration as a significant issue. Recognizing the potential for dataset imbalance,
we took proactive measures to address this concern. Specifically, to ensure a bal-
anced representation, we carefully selected an equal number of rows representing
both smelly and non-smelly instances for each code smell.

The resultant consolidated comma-separated file was aptly named the “code smell
dataset”. This multi-labeled dataset underwent a rigorous and systematic workflow
encompassing exploratory data analysis, data preprocessing, model training, and
model evaluation.
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Chapter 6

Methodology

6.1 A comprehensive comparative analysis between
tools that are integrated with compiler and
tools that uses machine learning models for
refactoring

6.1.1 AI-Powered Tools for Refactoring

Machine learning and deep learning are becoming popular day by day and have been
introduced to almost every aspect of computer science to make a developers life eas-
ier. In recent years, artificial intelligence has slid into the software industry and has
given rise to groundbreaking discoveries in automated detection of code smells and
automated(semi) refactoring of such code smells. In this part of the paper we will
look at some of the models and deep learning based tools that have been developed
to address the issue. Firstly, Aniche M. et al [30] have created a dataset by taking
projects from Apache, github and F-Droid to assess how machine learning models
such as random forest, SVM, naive bayes, decision tree and neural network perform
in providing recommendations for refactoring. After evaluating the models, it was
observed that random forest outperformed all the other models with accuracy of
93%, 90% and 94% in providing opportunities for refactoring on the class, method
and variable level respectively [30]. All other models have also performed well.

In addition to the existing machine learning models, many tools integrated with
deep learning models have been built to address this problem. One such tool is
Rmove [44], which has nine classifiers integrated in it including CNN, LSTM, and
GRU. This tool learns both structural and semantic information from a given code
snippet and suggests which portion of code requires the move method refactoring.
Moreover, AntiCopyPaster [44], which is a plugin for IntelliJ IDEA, also uses CNN
to detect duplicate chunks of code whenever a developer copy pastes a code or writes
a duplicate code. The model immediately suggests extract method refactoring on
those parts of the code. CNN’s contribution does not stop here, this model is also
seen in another tool called feTruth. feTruth determines the correct class a method
should be moved to. Similar to feTruth, Graph neural network models [44] can be
used to detect relationships between method and class and determine which method
should be moved to which class. Neural network [44], even though related to graph
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neural network models, takes a di↵erent approach in identifying in which class a
method should be moved. The authors [44] suggested that if the neural network
finds a method that is more interested in another class for more than two times
the output of the neural network model would be 0.5. ANN has also been used
as a fitness function [11] in a search-based learning algorithm as a newer approach
to software refactoring. This approach has been evaluated using six open source
systems and it was observed that this approach resulted in a precision of 80%. As
a deep learning model is being used, manual intervention is minimized as the ANN
can suggest which portions of the software needs refactoring [11]. Another study
[34] shows that ANN can be integrated into existing refactoring tools to detect code
smell and provide recommendations for refactoring. Before ANN was integrated into
the refactoring tool of Eclipse IDE, the tool could not detect code smells such as
duplicated code [34]. However, this problem was mitigated by ANN and the tool
now provided a finer grain detection of code smells.

The deep learning techniques to suggest refactoring are enhanced with the use of
state-of-the-art embedding techniques [44] such as CodeBERT, GraphCodeBERT,
CodeGPT, CodeT5, PLBART, and CoTexT that are used to find appropriate lines
of code that can be extracted to make a new method. All these embedders created
an abstract syntax tree of the lines of code. Deep learning models such as CNN and
LSTM were trained on the abstract syntax tree and were tested to see how they
performed in recommending extract method refactoring techniques [44].

End-to-end code transformation is the process of actually taking the code and refac-
toring the code based on the refactoring suggestions while making sure the code
behaviour does not change [44]. One such deep learning approach was taken to
refactor a programming language called the Erlang. Their tool consists of two
parts: localizer, detects code patterns that are same and can be used in di↵erent
contexts, and Refactoring component, transforms the same code to only exist once.
The source code is transformed to a sequence of tokens, which are the input of the
neural network model. Then the neural network finds the non-idiomatic parts of
the code. These non-idiomatic tokens are then used as the inputs to a recurrent
seq-2-seq model with attention mechanism [44]. This recurrent model outputs the
idiomatics code tokens which is the refactored version of the code. The localizer
achieved an accuracy of 99% and the Refactoring component achieved an accuracy
of 99.46% [44].

Compilers are not really good at suggesting variable names based on the context of
the code. To tackle this challenge, BERT architecture [44] has been implemented in
a tool called RefBERT to suggest variable names based on the surrounding codes.
The RefBERT [44] model uses the masked language modeling analogy to refactor
variable names. It blanks the variable name and looks at the surrounding codes and
determines the variable name that is the most suitable in place of the blank. After
evaluation RefBERT came up to be a reliable tool to use in suggesting context based
variable names.

Another huge benefit of introducing deep learning based refactoring is that it can
identify parts of a UML class diagram that can be refactored to reduce the number
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of classes present in the system [40]. ANN is used in this case to have a precision of
0.87, recall of 0.93, and F1 score of 0.90 in identifying functional decomposition in
an UML class diagram [40].

6.1.2 IDE Plug-in Tools For Refactoring

For many years, researchers and programmers have created and researched many
praiseworthy tools and libraries that were integrated with the IDE that is promi-
nent in refactoring smelly codes in a program. In this section we have thoroughly
analyzed and studied previous works of the researchers that gave us valuable in-
sights on how these refactoring tools worked, and how they have performed in mit-
igating code smells and providing a more cleaner software. At first, in the paper
[6], researchers have studied and analyzed how WitchDoctor an IDE performs in
refactoring programs. Its automatic ability allows it to detect programmers cod-
ing activity and enables it to refactor the code before the programmer refactor by
his/her own. The system comprises many complex computation paradigms like
textual di↵erencing, delayed AST node mapping, declarative specification language,
pattern-matching algorithms, and selective rollback. This complex system has made
it possible for WitchDoctor for faster, reliable and robust refactoring suggestions
where it is successful in simulating over 5000 refactoring operations across di↵erent
projects. WitchDoctor has a commendable ability where it can tackle programs that
are not parsed and incomplete. In addition, it is quick in adjusting to an abrupt
change in the program’s syntax which proves its accuracy.

Moving forward, the researchers in this paper [10] have introduced ClangMR which
is greatly parallelized and semantically aware. ClangMR re↵actors C++ programs
and it utilizes the broad semantic understanding from C++ abstract syntax tree to
make the refactoring process well versed. In addition, the system also has the abil-
ity to parallelize across multiple computer systems at once through leveraging the
MapReduce framework which allows ClangMR to refactor millions of lines of code
at a quick rate. As a result ClangMR is successful in refactoring huge codebases
without breaking the rules of semantics making it less prone for introduction of new
errors in the program. Apart from its speed, the system is also advantageous in
terms of scaling as it can transform 35000 function call sites where the size of the
C++ program is around 100 millions.

In De Stefano et al.’s paper [32], they have developed a novel method in detecting
and refactoring code smells that is that they have created a Java program plug-in
named Casper which is integrated to IntelliJ IDEA. Casper can identify and refactor
four kinds of code smells like Feature Envy, Misplaced Class, Blob and Promiscuous
Package. Thus, the system’s semi-automatic guidance does not require for program-
mers to refactor manually. In terms of accuracy, its accuracy is challenged in relation
to detecting code smell as the tool does not ensure whether it correctly identifies
genuine instances of code smells in source code or not. Also the refactoring process
does not provide the most accurate result as it fails to ensure the suggested altered
program e↵ectively addresses the identified code smells without creating new errors.
Even the researchers think that casper can be validated and improved through user
feedback.
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Furthermore, there have been many comparison analyses of how refactoring tools
perform which are binded with integrated environment developments (IDEs). Re-
garding this, Martin Drozdz et al. ’s [2] excellently portrayed how the refactoring
tools in intelliJ’s IDEA, IBM’s Eclipse, and Sun’s Netbeans performed. According to
their research, IntelliJ IDEA 5.0 is praised for its superior ease of use, productivity,
and comprehensive static code analysis tools, which include nearly 500 checks that
allow for precise identification of code smells and refactoring requirements. Eclipse
3.1, while robust with a comparable range of refactorings, is described as slightly
less user-friendly and productive than IDEA, with a lower emphasis on the accu-
racy of its refactoring tools. Netbeans 4.0 is criticized for its limited refactoring
capabilities, which support only four refactorings and lack essential features such
as the extract method, making it less e↵ective in identifying and addressing code
smells than IDEA and Eclipse. On the other hand, another brilliant work [14] has
emerged connected to too based automatic refactoring by IDEs. Francesca Arcelli
et al. ’s have done a comprehensive study on four refactoring tools like RefactorIT,
JDeodrant, Eclipse and IntelliJ IDEA. In compliance with their experimentation,
they have claimed that Eclipsed outperformed all other tools in refactoring with
high accuracy and reliability. IntelliJ also performed well in refactoring but they
observed that the tool occasionally dysfunctions and not that e�cient in refactor-
ing. RefactorIT performed well in removing code smells, but it lacked some features
and had reliability issues due to crashes. JDeodorant struggled with accuracy and
speed, introducing errors during refactoring and o↵ering less reliable recommenda-
tions than Eclipse and IntelliJ IDEA.

Lastly, Tsantalis et al.’s [26] did an extensive study on how JDeodorant, a Java
programming language based, performs in eliminating code smells that are in line
with object-oriented programs. JDeodorant has been evolved over the years and it
pivots on identifying which part of the program needs to be refactored, choosing
which refactorings algorithm to use, ensuring behavior preservation, carrying out
the refactorings of the identified smelly portion, evaluating the impact on quality
characteristics, and ensuring consistency between the refactored code and other
types of software fragments. While testing, JDeodorant reached a specific level of
precision and recall for detecting specific code smells. For instance, while refactoring
using the Move Method technique, JDeodorant achieved an average precision of 0.38
and an average recall of 0.25.

6.1.3 Comparative Analysis between IDE plugins /Compil-
ers and Artificial Intelligence to Refactor Code Smells

In this section we have highlighted and emphasized on how machine learning mod-
els performed exceptionally compared to tools that are in compliance with IDE. We
have done a complete investigation on a considerable amount of previous works re-
lating to this matter and finally we have concluded that machine learning refactoring
approaches outperforms tool based refactoring in three arguments. To begin with,
some of the IDE-plugins do not provide any numeric evidence in terms of accuracy,
precision and other performance metrics on how they have performed. In addition
some of the tools have not been compared with other other tools to validate its
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actual performance. For example- WitchDoctor [6] and ClangMR [10] being fast,
reliable and robust in refactoring but there is no solid proof in the respective papers
on how accurately these tools performed based on numbers or percentage metrics.
On the other hand, research papers relating to artificial intelligence based refactor-
ing are supported by performance metrics. For example, the figure 6.1 below shows
how Aniche et al. [30] have given detailed experimental results which validates its
accuracy.

Figure 6.1: Evaluation of Machine Learning Models on Refactoring

Moving forward to our next argument, the machine and deep learning models are
authenticated by comparing with IDE based tools. Some of the examples are:

• Rmove machine learning tool was compared with other compiler based tools
such as PathMove, JDeodorant, Jmove it was observed that it had an increase
in precision, recall, and F-measure from 14%-36%, 19%-45%, and 27%-44%
while refactoring Feature Envy code smell [44].

• Another CNN based tool feTruth to detect feature envy and suggest the class
to which a method should be moved. feTruth has beaten JDeodorant and
JMove in refactoring where feTruth showed that it had an accuracy of 93.1%
which is greater than JDeodorant’s 80% and JMove’s 87.5% [44].

• Graph NN provided an algorithm to determine in which class the method
should be moved to and when compared with JDeodorant and JMove the
accuracy improved by 5.13% and 11.0% [44].

In our last argument, we concluded that unlike machine learning, compilers use
a rule based approach to refactor code smells [19]. Machine learning approaches
are data-driven and identify code smells based on various software metrics. As the
machine learning models are data-driven they can figure out the parts of the code
that hinders the software quality the most. Moreover, models also help us give a
more in-depth analysis of which code smells a↵ect the software quality. This would
help developers to handle the most severe type of code smells first. As machine
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learning learns from various types of projects and source codes, in contrast to IDE
plugins it does not rely on rule based refactoring [19]. Also, since tools that are
compliant with the compiler use a rule based approach they cannot adapt to and
handle changes in the codebase. To provide an example, tools like Netbeans 4.0,
IntelliJ and Refactor IT [2], [14] cannot refactor certain code smells and collapses
on its own. In lieu, there are no traces of machine learning models failing to refactor
or crashes in any of the surveyed papers as machine or deep learning models are
more generalized and can handle a variety of software systems. Therefore, for better
understanding how machine learning models have a competitive edge over IDE plug-
ins a Table 6.1 has been created.
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Machine
Learning
Tool

Models
Used

Comparison
Scope

Comparison
Criteria

Compared
IDE Tools

Numeric
Imrpove-
ments

Rmove [44] Decision
Tree, Naive

Bayes,
SVM,
Logistic

Regression,
Random
Forest,
Extreme
Gradient
Boost,
CNN,
GRU,
LSTM

Feature
Envy

Precision,
Recall,

F-measure

PathMove,
JDeodor-
ant, Jmove

14%-36%,
19%-45%,
27%-44%

AntiCopy-
Paster [44]

CNN Long
Method

F -
measure

N/A 0.82

feTruth
[44]

CNN Feature
Envy

Accuracy JDeodorant,
JMove

13%, 5.6%

RefBERT
[44]

BERT Variable
Naming

N/A N/A N/A

N/A Graph
Nueral
Network

[44]

Feature
Envy

Accuracy JDeodorant,
JMove

5.13%,
11.0%

N/A Neural
Network

[44]

Feature
Envy

Accuracy JDeodorant,
JMove

Accuracy
is 75%
which is

better than
both

N/A Embedding
Technique

with
LSTM [44]
& CNN

Long
Method

N/A GEMS,
JExtract,
SEMI,

JDeodor-
ant,

Segmenta-
tion

Outperform
All IDE
tools

N/A ANN as
Fitness
Function

[11]

Code
Smells

Precision JDeodorant,
JMove

15%, 6%

Table 6.1: Comparision of various ML Tools and models with IDE plugins
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6.2 Code Smells and Metrics

Our research centers on the detection and reduce specific code smells, each resulting
in unique challenges to software maintainability:

Large Class (LC): A class that contains excessive number of lines [16].
Long Method (LM): A method that is huge in length making the code di�cult to
maintain [16].
Long Parameter List (LPL): A method that takes in a lot of parameters as ar-
gument [16].
Long Message Chain (LMCS): Occurs when multiple methods are called using
dot. This leads to lengthy calling of methods [16].
Long Lambda Function (LLF): Identifies lambda functions with an excessive
number of characters, deviating from their intended purpose as concise inline func-
tions [16].

For each code smell we selected, there is a specific metric or number of metrics
that determine the presence of a code smell. The metrics are taken from previous
literature [16]. Table 6.2 illustrates the code smell, at which level it occurs, the
metric, and the threshold of the metric at which the code smell occurs.

Code Smell Level Criteria Metric
Large Class (LC) Class CLOC � 35 CLOC: Class Line of Codes
Long Method (LM) Function MLOC � 50 MLOC: Method Line of Codes

Long Message Chain (LMCS) Expression LMC � 4 LMC: Length of Message Chain
Long Parameter List (LPL) Function PAR � 5 PAR: Number of Parameters

Long Lambda Function (LLF) Expression NOC � 70 NOC: Number of Character

Table 6.2: Metric-based Code Smells for Python

6.3 Artificial Neural Network (ANN)

In the development of our machine learning model for the multi-labeled dataset, a
neural network emerged as the preferred choice. With the task of generating five
outputs corresponding to code smell probabilities based on given inputs, we designed
the architecture with key decisions already in place.

For the neural network architecture, the number of input and output nodes was
predetermined. The Rectified Linear Unit (ReLU) activation function was chosen
for the hidden layers, as it is produces less computation due to some neurons being
inactive [21], and the Sigmoid activation function for the output layer, as this is
classification problem sigmoid functions help in transforming the output to prob-
ability space thus performing better than other activation function [21]. However,
determining the optimal number of hidden layers and nodes posed a challenge. Be-
ginning with the mean of inputs and outputs as the number of nodes, we iteratively
adjusted this count to find the most e↵ective configuration.
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Having finalized the architecture, we proceeded to test the model using di↵erent
versions of our dataset. Initially, irrelevant columns were dropped, resulting in an
accuracy range of 45% to 50%. Subsequently, scaling the dataset improved accuracy
to around 60%

The optimal architecture, shown in figure 6.2, materialized with two hidden layers,
the first comprising twelve nodes and the second six nodes. The dataset’s refinement
involved removing outliers, scaling the data, and achieving balance by duplicating
rows. Upon evaluation, the model demonstrated an impressive accuracy of 87% to
90%. Further validation was conducted by testing the model with random inputs,
producing anticipated results. This comprehensive approach to model development
and testing underscores the e↵ectiveness of the chosen neural network architecture
and dataset refinement techniques.

Figure 6.2: Architecture of The Neural Network
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6.4 Ensemble Learning using Label Powerset

6.4.1 Label Powerset

In a multi-label classification problem, a single instance can belong to more than one
or more classes. To deal with such multiple-label datasets, problem transformation
or algorithm adaptation approaches can be considered. For our dataset, we have
used a problem transformation method. The algorithm that is used in the problem
transformation method converts the multi-label learning technique into one or more
single-label classification techniques, where each transformed problem can be viewed
as a typical binary classification task [12]. Further, many algorithms fall under the
category of problem transformation methods like binary relevance, label powerset,
and classifier chains. For our multi-label classification problem, we have chosen
the label powerset algorithm. The label powerset algorithm converts the task of
classifying multiple labels into classifying all the probable combinations of labels.
This works by taking all the unique subgroups of multiple labels that are present in
the training dataset and creating each subgroup a class attribute for the classification
problem. Figure 6.3 below shows the classification procedure for the label powerset.

Figure 6.3: Label Powerset example

6.4.2 Ensemble Learning Algorithms

After converting the multi-label classification problem using the label powerset, we
can use traditional ensemble learning techniques. Concerning our problem, we have
used three ensemble models, which are:

• AdaBoost: AdaBoost, which is short for adaptive boosting, is one of the en-
semble techniques that accumulates the output of weak learners to create a
strong learner. It is known that for classifying binary kinds of problems, Ad-
aBoost won the race. In addition, it is the most familiar boosting approach
for such two-fold classification problems [37].
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Figure 6.4: AdaBoost example

• XgBoost: XgBoost, which is short for extreme gradient boosting, is a popular
ensemble technique that was developed by Tianqi Chen [37]. XgBoost uses
decision trees as its base learners and its goal is to minimize the objective
function. It is well known for optimizing the gradient-boosting algorithm.

Figure 6.5: XgBoost example

• Random Forest: This is one of the most widely used algorithms for classifica-
tion and regression problems. It is also an ensemble model that joins multiple
decision trees in order to enhance accuracy and lower overfitting [41].

Figure 6.6: Random Forest example

6.4.3 Model Implementation and their Performance

Regarding our multi-label code smell classification problem, we first imported re-
quired libraries like Label Powerset, AdaBoost, XgBoost, and Random Forest from
the Python scikit-learn library. Moving on, the input features like the code smell
metrics were labeled as the x-variable and the code smells were labeled as the output
y-variable. Then the tertiary dataset is divided for training and testing, with 80%
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of the dataset for training and the remaining for testing. To run the algorithms we
have to first choose our base classifier like AdaBoost, XgBoost, and Random Forest.
In the process of the implementation, the Label powerset function then creates all
the subset of combinations like {Large Class}, {Large Class, Long Method}, {Long
Method, Long Parameter List, Long Lambda Function} etc, where all the combi-
nations become a distinct category and the base classifiers try to predict them all
at once. In the next phase, we used several performance metrics to understand how
better the base classifiers were in predicting the code smells from the Python files.
We have utilized accuracy, precision, F1, recall, and hamming loss as evaluation
metrics. The performance of the ensemble techniques is outlined below in the table:

Ensemble Models Accuracy Precision F1-Score Recall Hamming Loss
AdaBoost 69% 96% 83% 73% 0.06
XgBoost 100% 100% 100% 100% 0.00000798

Random Forest 100% 100% 100% 100% 0.00000533

Table 6.3: Performance metrics for Ensemble Learning Models

From Table 6.3, we can evaluate that XgBoost and Random Forest were absolute
best in detecting code smells with 100% accuracy, precision, F1-score and Recall.
However, AdaBoost could not perform well in identifying the code smells. In addi-
ton, XgBoost and Random Forest’s hamming loss value was also very low compared
to AdaBoost.

6.5 Refactoring

6.5.1 Refactoring of Long Method

As RQ1 and RQ2 which have already been addressed, RQ3 addresses the fact of
incorporating an intelligent algorithm to automate the process of refactoring code
smell. According to our analysis, Large Class and Long Method were the most pop-
ular contributing bad smells in python files. Hence, we have chosen Long Method
as our prime code smell to restructure it. Almost every author in their papers has
mentioned Martin Fowler and Kent Beck [20], [28], [38], [39], [42] who brought en-
lightenment in the software code smells and refactoring process. Martin and Kent
[25] vividly describes the art of refactoring. It is a process of creating a change in a
software structure without changing the external composition of the code, however
bringing an enhancement in the internal composition of code. Refactoring aids in
eradicating code smells, improving the software quality of the system and diminishes
the cost of maintaining a code base. Therefore, reducing the possibility of introduc-
ing new software bugs and also identifying bugs if there are any. It is important to
understand that refactoring is not synonymous to rewriting a code script as refac-
toring fails to alter the functionality of the code script [28]. Refactoring a python
Long Method code smell manually can have several drawbacks like immense time
consumption, tedious and prone to making errors while refactoring. As a result an
automated process of refactoring will bring ease in developers’ minds.
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6.5.2 Long Method and its refactoring solution

Long method is one of the most rampant code smells in almost every software project
[39]. As the name suggests, it deals with methods (functions) in programs and it falls
under the category of ‘bloaters’. Bloaters are referred to code, methods and classes
that it’s length have increased to such an enormous extent that it becomes extremely
complex to work with. Long method gives developers a hard time in reading and
understanding the code scripts as the method consists of multiple conditions, loops,
variable declarations and data operations. The problem of long methods can be
decoded by decreasing the complexity of the method. This is done through pointing
out those parts of the function that need explanation and separate it into a new
method [28].
Several techniques are established by Martin and Kent [25] to tackle long methods
and (Agnihotri & Chug, 2020) have spotted the most familiar refactoring approaches
like move method, extract class and extract method. In our study, we have used the
principles of the extract method in order to build the architecture of our automated
refactoring tool. Extract method is the process where part of the method can be
divided and a new method is created for that part. Codes that need explanation
are extracted and pasted in the new method. In addition, the necessary aspects like
variables and parameters of the extracted method are exported as new parameters
to the newly built method. (Fowler & Kent, 2018) have explained the benefits of
extracting a method. Those benefits are that the extract method gives rise to the
probability of other methods to use a method where it is properly refactored and
improves the readability of the higher-level methods.

6.5.3 Detailed Architecture of the Proposed Refactoring Al-
gorithm

In this segment, we will be presenting and highlighting every detail of our proposed
model that aims to mechanize the entire procedure of refactoring a Long Method.
Taking conceptual ideas of extracting a method from (Fowler & Kent, 2018) book
and the following related research papers [1], [4] on refactoring Long Methods of
‘Java’ programs. We have formulated our proposed approach on refactoring python
Long methods.
The flow chart presented in Figure 6.7 is the high-level design of our suggested algo-
rithm. In the first step, a python file containing long methods is given as an input to
our main function which then carries out four important mechanisms. In the second
step, the structure of the input file is checked like the indentation and spacing of
the file. If there is any indentation error then it is corrected before moving to the
next course of action. Moving on to the third and fourth step, long methods are
thoroughly examined and conditional statements are found out and removed from
the long method and placed in the new method. Lastly, the input file is refactored
where complex if-else statements are converted into new methods (basic statements)
and are called in the input file. Thus, the system reduces the overall line numbers
of the input long method. The following sections give a comprehensive explanation
of each step of the suggested algorithm.
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Figure 6.7: Flow chart of the naive refactoring algorithm

A. Exemplifying the Input File

To illustrate the mechanism of the algorithm we have created a simple program
that consists of a long method of our own. This python long method is used
to classify a person based on age, gender and income. The size of the method
is 67 lines which exceeds the threshold of MLOC as discussed in Table 5.1.
For better apprehension and automation of the refactoring process we have
only considered conditional (if-else) statements that need to be extracted. As
a result, the newly created method contains a gargantuan if-else statement
making the method complex to refactor. The following function shown in list-
ing 6.1 will be used as an example source code to elucidate the framework of
the algorithm and it is referred as example code.py.

1 def classify_person(age, gender, income):
2 for i in range(3):
3 if age < 18:
4 if gender == ’male’:
5 if income < 20000:
6 return ’Young male with low income’
7 elif 20000 <= income < 40000:
8 num = 5
9 return ’Young male with moderate income’

10 else:
11 return ’Young male with high income’
12 else: # Gender is female
13 if income < 20000:
14 # x += 1
15 # y += 2
16 return ’Young female with low income’
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17 elif 20000 <= income < 40000:
18 return ’Young female with moderate income’
19 else:
20 return ’Young female with high income’
21 elif 18 <= age < 65:
22 if gender == ’male’:
23 if income < 30000:
24 return ’Middle-aged male with low income’
25 elif 30000 <= income < 60000:
26 return ’Middle-aged male with moderate

income’
27 else:
28 return ’Middle-aged male with high income’
29 else: # Gender is female
30 if income < 30000:
31 return ’Middle-aged female with low

income’
32 elif 30000 <= income < 60000:
33 return ’Middle-aged female with moderate

income’
34 else:
35 return ’Middle-aged female with high

income’
36 else: # Age is 65 or above
37 if gender == ’male’:
38 if income < 25000:
39 return ’Senior male with low income’
40 elif 25000 <= income < 50000:
41 return ’Senior male with moderate income’
42 else:
43 return ’Senior male with high income’
44 else: # Gender is female
45 if income < 25000:
46 return ’Senior female with low income’
47 elif 25000 <= income < 50000:
48 return ’Senior female with moderate

income’
49 else:
50 return ’Senior female with high income’
51 # x = 5
52 if age < 18:
53 if gender == ’male’:
54 if income < 20000:
55 return ’Young male with low income’
56 elif 20000 <= income < 40000:
57 # x = 5
58 return ’Young male with moderate income’
59 else:

45



60 return ’Young male with high income’
61 else: # Gender is female
62 if income < 20000:
63 return ’Young female with low income’
64 elif 20000 <= income < 40000:
65 return ’Young female with moderate income’
66 else:
67 return ’Young female with high income’

Listing 6.1: example code.py

B. Composition of the Main File

This classify person function is fed as an input to our main program. The main
function then carries out and orchestrates sequentially the four key services in
order to refactor the example long function classify person. The four important
branches of the main function include check file format.py, check method.py,
extract method.py & refactor.py. However, if there is no large conditional
statement in the input method then the main function will generate an output
telling that there is no presence of conditional statement for extraction and
refactoring. Figure 6.8 and the code snippet in listing 6.2 displays the func-
tionality of the main function:

Figure 6.8: Structure of the main.py

1 from check_method import check_method
2 from extract_method import extract_method
3 from refactor import refactor
4 from check_file_format import check_file_format
5

6 def main(filename):

46



7 # Your main function to orchestrate everything
8 check_file_format(filename)
9 data, long_condition = check_method(filename)

10 print(long_condition)
11 if len(long_condition) != 0:
12 functions = extract_method(data, long_condition)
13 refactor(functions, long_condition, filename)
14 else:
15 print("There is no if statement that is between 6

and 50")
16

17

18 if __name__ == "__main__":
19 main(’Example Codes/example_code.py’)

Listing 6.2: main.py

C. Inspecting the input python file

In this section, the example code.py is investigated exhaustively to find any
unevenly indented code. This is done in a series of steps. At first the exam-
ple code.py is read line by line and we have used ‘rb’ (read binary) in order
to not exclude any white spaces in the input file. Secondly, since the file is
formatted to binary we have used ‘utf-8’ decoder to decode each binary line
of code back into string data type. Moving on, each line is then added in an
array data structure and the array is passed in a loop for checking and fixing
indentation error. Lastly, the modified strings of lines are appended in another
array called new lines and it is further written in the existing input python file.
For instance, there has been an indentation error in the line 4 and 61 of the
example code.py which will be formatted precisely after the implementation
of the file formatting tool. The following listing 6.3 and 6.4 represent how
check file format is capable to format the input python file:

1 def classify_person(age, gender, income):
2 for i in range(3):
3 if age < 18:
4 if gender == ’male’:
5 if income < 20000:
6 return ’Young male with low income’
7 elif 20000 <= income < 40000:
8 num = 5
9 return ’Young male with moderate income’

10 else:
11 return ’Young male with high income’
12 else: # Gender is female
13 if income < 20000:
14 # x += 1
15 # y += 2
16 return ’Young female with low income’
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17 elif 20000 <= income < 40000:
18 return ’Young female with moderate income’
19 else:
20 return ’Young female with high income’
21 elif 18 <= age < 65:
22 if gender == ’male’:
23 if income < 30000:
24 return ’Middle-aged male with low income’
25 elif 30000 <= income < 60000:
26 return ’Middle-aged male with moderate

income’
27 else:
28 return ’Middle-aged male with high income’
29 else: # Gender is female
30 if income < 30000:
31 return ’Middle-aged female with low

income’
32 elif 30000 <= income < 60000:
33 return ’Middle-aged female with moderate

income’
34 else:
35 return ’Middle-aged female with high

income’
36 else: # Age is 65 or above
37 if gender == ’male’:
38 if income < 25000:
39 return ’Senior male with low income’
40 elif 25000 <= income < 50000:
41 return ’Senior male with moderate income’
42 else:
43 return ’Senior male with high income’
44 else: # Gender is female
45 if income < 25000:
46 return ’Senior female with low income’
47 elif 25000 <= income < 50000:
48 return ’Senior female with moderate

income’
49 else:
50 return ’Senior female with high income’
51 # x = 5
52 if age < 18:
53 if gender == ’male’:
54 if income < 20000:
55 return ’Young male with low income’
56 elif 20000 <= income < 40000:
57 # x = 5
58 return ’Young male with moderate income’
59 else:
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60 return ’Young male with high income’
61 else: # Gender is female
62 if income < 20000:
63 return ’Young female with low income’
64 elif 20000 <= income < 40000:
65 return ’Young female with moderate income’
66 else:
67 return ’Young female with high income’

Listing 6.3: example code.py before applying check file format.py

1 def classify_person(age, gender, income):
2 for i in range(3):
3 if age < 18:
4 if gender == ’male’:
5 if income < 20000:
6 return ’Young male with low income’
7 elif 20000 <= income < 40000:
8 num = 5
9 return ’Young male with moderate income’

10 else:
11 return ’Young male with high income’
12 else: # Gender is female
13 if income < 20000:
14 # x += 1
15 # y += 2
16 return ’Young female with low income’
17 elif 20000 <= income < 40000:
18 return ’Young female with moderate income’
19 else:
20 return ’Young female with high income’
21 elif 18 <= age < 65:
22 if gender == ’male’:
23 if income < 30000:
24 return ’Middle-aged male with low income’
25 elif 30000 <= income < 60000:
26 return ’Middle-aged male with moderate

income’
27 else:
28 return ’Middle-aged male with high income’
29 else: # Gender is female
30 if income < 30000:
31 return ’Middle-aged female with low

income’
32 elif 30000 <= income < 60000:
33 return ’Middle-aged female with moderate

income’
34 else:
35 return ’Middle-aged female with high
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income’
36 else: # Age is 65 or above
37 if gender == ’male’:
38 if income < 25000:
39 return ’Senior male with low income’
40 elif 25000 <= income < 50000:
41 return ’Senior male with moderate income’
42 else:
43 return ’Senior male with high income’
44 else: # Gender is female
45 if income < 25000:
46 return ’Senior female with low income’
47 elif 25000 <= income < 50000:
48 return ’Senior female with moderate

income’
49 else:
50 return ’Senior female with high income’
51 # x = 5
52 if age < 18:
53 if gender == ’male’:
54 if income < 20000:
55 return ’Young male with low income’
56 elif 20000 <= income < 40000:
57 # x = 5
58 return ’Young male with moderate income’
59 else:
60 return ’Young male with high income’
61 else: # Gender is female
62 if income < 20000:
63 return ’Young female with low income’
64 elif 20000 <= income < 40000:
65 return ’Young female with moderate income’
66 else:
67 return ’Young female with high income’

Listing 6.4: example code.py after applying check file format.py

D. Analyzing the Long Method

The actions in the check method are segmented into three parts. The first and
foremost task of the check method is to identify and keep count of the number
of if-else statements. The criteria for being a long conditional statement is that
if the size (number of lines) of the conditional statement is greater than 5, then
the check method will regard it as a long conditional statement. All the local
and global variables that are associated with the conditional statements need
to be pointed out and passed as a parameter for the new function created. Ad-
ditionally, the starting and ending line number of the if-else statement need to
be accounted for so that the new function will be aware from which line num-
ber to call the new function. To keep track of the number of if-else statements
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and variables, they are placed in a dictionary named long condition. The key
of the dictionary is the number of conditional statements while the values are
the start and end of the conditional statement and variables. The figure 6.9
distinctly depicts the output of the long condition from example code.py. Ac-
cording to the example code.py, there are two long if-else statements that are
greater than 5, as a result there are two items in the dictionary. The first
conditional structure had 4 parameters while the second condition had 3 pa-
rameters. Another important dictionary is also created in the check method
which is quite crucial in the extract method section. This dictionary consists
of the line number as key of the python dictionary and code on that particular
line number as value for the python dictionary. Both of these dictionaries are
passed as parameters of the extract method.

Figure 6.9: Output of the dictionary long condition for the input exmaple

E. Configuration of the extract method

In the extract method.py, a new method is automatically generated and placed
in a new python file called new method.py. For each of the long conditional
statements, new functions are produced. This is done through recognizing the
number of keys in the long condition dictionary. Each of these new functions
only contains the withdrawn if-else statements from the example code.py and
parameters of each of these functions are also taken out from the values of the
long condition. Although, for smooth and seamless building of new methods,
the data dictionary is looped from the starting point of the if-else statement to
the end point (start and end points are passed as values in the long condition)
so that any extra line of code apart from the conditional statements are omit-
ted from the new functions that are created. The listing 5.5 clearly shows that
the extract method is successful in bringing out two conditional statements and
creating separate method for each of the conditions from the example code.py.
Listing 6.5 is the output for the extract function:

1 def method_1(age, gender, income, num):
2 if age < 18:
3 if gender == ’male’:
4 if income < 20000:
5 return ’Young male with low income’
6 elif 20000 <= income < 40000:
7 num = 5
8 return ’Young male with moderate income’
9 else:

10 return ’Young male with high income’
11 else: # Gender is female
12 if income < 20000:
13 # x += 1
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14 # y += 2
15 return ’Young female with low income’
16 elif 20000 <= income < 40000:
17 return ’Young female with moderate income’
18 else:
19 return ’Young female with high income’
20 elif 18 <= age < 65:
21 if gender == ’male’:
22 if income < 30000:
23 return ’Middle-aged male with low income’
24 elif 30000 <= income < 60000:
25 return ’Middle-aged male with moderate

income’
26 else:
27 return ’Middle-aged male with high income’
28 else: # Gender is female
29 if income < 30000:
30 return ’Middle-aged female with low

income’
31 elif 30000 <= income < 60000:
32 return ’Middle-aged female with moderate

income’
33 else:
34 return ’Middle-aged female with high

income’
35 else: # Age is 65 or above
36 if gender == ’male’:
37 if income < 25000:
38 return ’Senior male with low income’
39 elif 25000 <= income < 50000:
40 return ’Senior male with moderate income’
41 else:
42 return ’Senior male with high income’
43 else: # Gender is female
44 if income < 25000:
45 return ’Senior female with low income’
46 elif 25000 <= income < 50000:
47 return ’Senior female with moderate

income’
48 else:
49 return ’Senior female with high income’
50

51 def method_2(age, gender, income):
52 if age < 18:
53 if gender == ’male’:
54 if income < 20000:
55 return ’Young male with low income’
56 elif 20000 <= income < 40000:
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57 # x = 5
58 return ’Young male with moderate income’
59 else:
60 return ’Young male with high income’
61 else: # Gender is female
62 if income < 20000:
63 return ’Young female with low income’
64 elif 20000 <= income < 40000:
65 return ’Young female with moderate income’
66 else:
67 return ’Young female with high income’

Listing 6.5: Output of extract method (new method.py)

F. Refactoring the input long method

As parameters the refactor function takes three parameters which are long condition
dictionary, the newly built extracted functions and the input example code.py
file. The example code.py file is read from top to bottom and the refactor func-
tion taking help from the long condition dictionary it notices the line number
from where the new functions need to be placed. Eventually, on that particu-
lar line number the refactor function without making any mistake it calls the
newly constructed functions.

1 from new_method import *
2 def classify_person(age, gender, income):
3 for i in range(3):
4 method_1(age, gender, income, num)
5 # x = 5
6 method_2(age, gender, income)

Listing 6.6: example code.py after being refactored

From the above listing 6.6 it can be observed that our unsophisticated al-
gorithm is successful in shortening the Long Method (classify person) of the
input file example code.py. Since two conditions were present in the input file,
two methods have been created, imported and called in the appropriate loca-
tion and other lines of code have remained untouched. The number of lines
has been drastically reduced from 67 to 6 lines which is significantly below the
benchmark set for Long Method (MLOC � 50).
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Chapter 7

Result Analysis

7.1 Analysis of Code Smell Detection

7.1.1 Data Analysis

To understand the relationship between the input features and the output class
label, we have analyzed the data. This inspection of data was graphically inspected
with the aid of Python libraries like ‘seaborn’ and ‘matplotlib’. At first, we plotted
the number of code smells for each type of code smell in a bar chart to estimate
the number of code smells that were present in each py file of the projects. In the
bar charts represented in figure 7.1, the x-axis represents the type of class and the
y-axis represents the amount of code smell in each file.

Figure 7.1: Class distribution of LLF, LM, LMCS, LPL & LC

After evaluating the bar charts, we can see that two bar graphs were plotted, where
each bar graph shows the number of smelly (1) and non-smelly (0) py files. From the
above graphs, we get a clear idea that most .py files contained Large Class (LC) and
Long Method (LM) code smells. In contrast, very few py files contained code smells
that belonged to the categories of Long Message Chain (LMCS), Long Parameter
List (LPL), and Long Lambda Function (LLF).
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7.1.2 Relationship between input features and the class la-
bel

To examine any relation between all the code smell metrics (input features) and the
final class label, like the presence of Python code smell, we have plotted a scatter
plot diagram. The scatter plot diagram gave us insightful information about their
relationship. This was done through the use of the pairplot function of the seaborn
library. The scatter plot diagrams for each code smell are shown in figure 7.2, 7.3,
7.4, 7.5 and 7.6.

Figure 7.2: Relation between Large Class and other Code Smells

Figure 7.3: Relation between Long Lambda Function and other Code Smells

Figure 7.4: Relation between Long Method and other Code Smells

Figure 7.5: Relation between Long Message Chain and other Code Smells

Figure 7.6: Relation between Long Parameter List and other Code Smells

From figures 6.2 to 6.6, we can understand that a code smell can occur not only
based on its own particular metric but also due to the presence of other code smell
metrics. For instance, in figure 6.5 above, we can see that most of the Large Class
(LC) has occurred due to its own metric CLOC, but it is also evident that there
are some of the Large Class smells that happened due to other metrics like MLOC,
LMC, as well as the rest of the metrics.
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7.1.3 Correlation of the code smells and their metrics

A statistical measure called correlation indicates how much two variables change
together. A common way to represent correlation is with the Pearson correlation
coe�cient, which has a range of -1 to +1. A positive correlation means that if the
value of one variable increases, then the value of the other variable also increases
(value > 0). A negative correlation means that if the value of one variable increases,
then the value of the other variable decreases (value < 0). If there is no linear
relationship between the variables, then there is a correlation of 0 (value = 0).
Therefore, we have created a heatmap to find out the correlation between the input
features and class labels using the seaborn library. The heatmap is shown in figure
6.7.

Figure 7.7: Correlation Heatmap

From figure 7.7, we can see that there is a strong positive correlation between the
code smell and their code smell metrics. Besides, there is a weak correlation between
code smells and the code smell metrics that are not of their type.
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7.2 Analysis of the Refactoring Algorithm

After designing our algorithm and building it using python, we ran the tool on
four di↵erent python files with each file being more complex than its previous ones.
These python files were drawn out from our primary dataset and each of these files
consisted of a long method greater than the threshold (MLOC � 50). Even though
we took a very naive approach of extracting long if-else statements to address the
long method code smell, we saw some promising results. The results are discussed in
the upcoming sub sections with codes from each file before and after going through
our algorithm.

7.2.1 File 1: Basic Example with a a long if-else statement

The example code.py consisted of two simple and long if-else statements. The first
statement was inside a for-loop and the second statement was on its own. The for-
loop was added to check if our algorithm could handle di↵erent levels of indentations
and some comments were also added to check if our algorithm could ignore these
comments. After running our algorithm on the file shown in figure 7.8, it was seen
that it could refactor it e�ciently and elegantly.

Figure 7.8: File 1 - Before Refactoring
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Figure 7.9: File 1 - After Refactoring

Figure 7.9 shows the file after refactoring, from this we observed that even though
“num” is a local variable, which was declared inside the if-else statement, it got
passed as a parameter to method 1. Moreover, the new methods that were created
return a value thus it should have been stored in a variable rather than just calling
it. Hence, some manual adjustment is needed to make the code work properly.
Even though our algorithm did not work, it correctly identified the part of code
that needed refactoring and almost provided a neat solution.

7.2.2 File 2: Example that does not require refactoring

We chose our second file, which did not require any refactoring. This was deliberately
done to analyse how our tool tackled a code base that has small if-else statements.

Figure 7.10: File 2 - Before Refactoring
Figure 7.11: File 2 - After Refactoring
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After executing our tool on the file shown in figure 7.10 and 7.11 it is seen that
although the code has small if statements it does not refactor the code. However,
the indentations and the empty lines are removed by the check file format.py file.
Our design makes sure that if there is not any if-else statement that is between six
to fifty lines the tool will ignore it.

7.2.3 File 3: Complex Example - I

Our main goal in using this complex example was to find out how our tool performed
when it came to code bases that had sophisticated python syntax. Moreover, using
these examples helped us in finding edge cases and we tried to resolve as many edge
cases we could. However, the most challenging part for us in this example was to
find out the parameters that should have been passed into the method that our
algorithm extracted.

Figure 7.12: File 3 - Before Refactoring
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Figure 7.13: File 3 - After Refactoring

The three important observations that we analysed after applying our tool on file
shown in figure 7.12 are:

1. Our tool was successful in finding out the portion of code that needed refac-
toring. Thus, our algorithm is well built, even for complex methods, to find
out segments of code that need refactoring.

2. As discussed previously, our algorithm is still in development and it cannot
handle parameters. It is evident as two of the methods that our tool extracted
are either missing some parameters that should have been passed or extra pa-
rameters were passed leading to another sort of code smell of Long Parameter
List as stated in methodology 5.1.

3. After undergoing refactoring it is seen that the line number decreased from
128 to 87.

Nevertheless, it is clear that long methods can be refactored e↵ortlessly, which can
be seen from figure 7.13, only if we can identify the part of code that needs to be
extracted. Our naive approach can be evolved to handle such cases.

7.2.4 File 4: Complex Example - II

The main di↵erence in this file, figure 7.14, compared to the previous one is that
it contains a nested for-loop. Moreover, in the nested for-loop there is long if-elif
statement with comments in between the if and elif statements. In addition, the
code contains a comment that does not use the conventional hashtag. All these
complexities produced a lot of challenges and helped us in finding the limitations of
our algorithm.
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Figure 7.14: File 4 - Before Refactoring

Figure 7.15: File 4 - After Refactoring
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Along with the limitations of the tool that were discussed previously this file intro-
duced us with additional problems, which can be seen on figure 7.15.

1. If there are continuous if-elif statements our technique in extracting the part
of the code fails.

2. Our tool extracted out a method from line 28 to 38, which it should not have.

3. Also, it missed to refactor two elif statement that were present between line
66 and 72. The algorithm instead extracted out two methods: method 3 and
method 4.

4. Method 5 should have also contained the if statement that is in line 40.

5. Method 6 contains python keywords as parameters.

Our algorithm performed poorly in this example and showed us that there are grow-
ing number of edge cases. Although our algorithm failed, we believe that if given
time our tool would evolve to handle numerous edge cases and make the algorithm
more dynamic. The snippet of the refactored file is given in the previous page.
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Chapter 8

Conclusion

8.1 Limitations

In our research we were able to detect code smells using ensemble technique and
neural network and also proposed a naive approach to refactoring one of the code
smells, long method. However, there are limitations to our work that need address-
ing. Firstly, developers might not address some of the code smells that we proposed
because they might find it di�cult to address the code smells or the code smells
have little to no e↵ect on the code [23]. Secondly, our refactoring algorithm finds
any long if-else statement and extracts it for refactoring. However, developers and
software engineers have their own perspective on the segment of code that needs
refactoring [18]. Addressing perspective is out of scope for our research. Lastly,
our algorithm was not able to handle some of the files as discussed in the previous
section and also the design of the algorithm is simple which gives rise to poor per-
formance. The limitations of the algorithm are divided into two subsections, which
is discussed below.

8.1.1 Incomplete Code Refactoring

In the previous section we have analysed in-depth, which kind of code our algorithm
cannot handle and why it cannot handle it. In addition to the discussed limitations,
there are a few more flaws that have not been addressed yet.

It is evident that a long for-loop causes a long method smell. Our tool cannot find
the for-loop from given code and refactor it. Moreover, to refactor a python file we
import the extracted method from another file. As the extracted method is written
in another file it is unaware of any functions that are inside it. Thus, error occurs
when we call these extracted methods in place of the actual code.

8.1.2 Performance Constraints

Our straightforward approach in designing the algorithm gives rises to heavy com-
putations which increases the runtime of the tool if the python files are large. To
solve the edge cases we used a lot of “if” statements, which requires a lot of com-
putation. Moreover, our algorithm finds parts of code that are between a threshold
and refactors it. However, this simplistic approach does not take any other factors
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into consideration thus solves the problem using a greedy approach. The greediness
causes the time complexity of the algorithm to be between linear and polynomial.

8.2 Future Work

After heavy investigation, we still feel that there is lots of room for improvement
for our naive approach in refactoring the Long Method. As our future prospects, we
would work on improving and mitigating on some of the aspects our algorithm like:

• Our algorithm still lacks in identifying loop statements in long methods which
are one of the important codes in a long method that exhibits strong explana-
tion of the overall method. Apart from identification of loop statements, we
look forward to modifying the system in such a way so that it can also extract
a chunk of loop statement from the input long method and refactor like it does
for conditional statements.

• As discussed in the analysis portion of 7.2.3 and 7.2.4, the system fails to
take care of complex parameters of the long methods, we would like to bring
refinement in this part of the system as well. Therefore, without any human
intervention it should be capable of adding the necessary parameters in the
newly born functions and avoids taking any extra non-necessary parameters.

• It is evident that our tool can refactor simple Long methods but it is safe to
say that it is quite computationally expensive and static in refactoring. As
our future objectives, with the aid of the research community we would like
to deeply investigate and put into practice the use of large language models so
that these models are victorious in refactoring long methods. Large language
models will be trained on billions of parameters, in order to teach the model
on what a long method is and how to refactor a long method using extract
method. As a result, our large language model can easily, dynamically, and
with less computation it can produce a refactored version of our input Long
Method.

8.3 Conclusion

Addressing the critical need for automated code smell detection and refactoring in
maintaining software quality and bolstering maintainability, this paper focuses on
Python, an area overlooked in prior research. Leveraging the PySmell tool [16] from
the literature, we present a comprehensive multi-labeled code smell dataset tailored
for compatibility with machine learning models. Demonstrating the e�cacy of ar-
tificial neural networks and ensemble models in accurately detecting code smells,
we extend our investigation to the next frontier – automated refactoring of long
method using extract method. Employing a basic extract method algorithm, we
aim to refactor identified long if-else statement inside a long method, subsequently
analysing the results in decrease of code smell in four python files and finding the
limitations of our unsophisticated algorithm. Our endeavor underscores the impor-
tance of preserving code cleanliness by detecting code smells that requires refactoring
and providing a naive approach for refactoring to ensure optimal maintainability in
Python code bases.
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sanien, and V. Snášel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 177–195, isbn: 978-3-642-01536-6. doi: 10.1007/978-3-642-01536-
6 8. [Online]. Available: https://doi.org/10.1007/978-3-642-01536-6 8.

[4] L. Yang, H. Liu, and Z. Niu, “Identifying fragments to be extracted from long
methods,” in 2009 16th Asia-Pacific Software Engineering Conference, 2009,
pp. 43–49. doi: 10.1109/APSEC.2009.20.

[5] P. Larsen, R. Ladelsky, S. Karlsson, and A. Zaks, “Compiler driven code com-
ments and refactoring,” in Fourth Workshop on Programmability Issues for

Multi-Core Computers (MULTIPROG-2011), Citeseer, 2011, p. 64.

[6] S. R. Foster, W. G. Griswold, and S. Lerner, “Witchdoctor: Ide support for
real-time auto-completion of refactorings,” in 2012 34th International Confer-

ence on Software Engineering (ICSE), 2012, pp. 222–232. doi: 10.1109/ICSE.
2012.6227191.

[7] P. Larsen, R. Ladelsky, J. Lidman, S. A. McKee, S. Karlsson, and A. Zaks,
“Parallelizing more loops with compiler guided refactoring,” in 2012 41st In-

ternational Conference on Parallel Processing, IEEE, 2012, pp. 410–419.

[8] F. A. Fontana, M. Zanoni, A. Marino, and M. V. Mäntylä, “Code smell de-
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