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Abstract

Generative models for high dimensional data, in particular images have made tremendous advances in recent years.
Although various methodologies, notably among them Generative Adversarial Network, have started to produce im-
ages with high fidelity and diversity, creativity has drawn considerably less attention in the literature. In this work, a
novel method for painting generation that explicitly seeks to maximize creativity of produced paintings is proposed.
Our method reinterprets and formalizes the notion of creativity and borrows ideas from adversarial sample generation
to propose a simple and efficient algorithm for creative art generation. We experiment both on synthetic and real world
datasets and demonstrate the effectiveness of our proposed method.

Keywords: Neural network, Generative adversarial network, Creativity, Creative adversarial network, Decision

boundary, Adversarial attacks

1. Introduction

Solving creativity, a broad term that encapsulates
understanding what makes any particular piece of
art creative and applying these principles to gen-
erate new creative products in an automated way
has long been pursued by scientists, specially the
artificial intelligence community. One particular
branch of this pursuit is automated painting gener-
ation, which is now undergoing a renewed wave of
interest after discovery of some very promising tech-
niques in image domain, in particular deep learning.

Since Alexnets [1] astonishing performance in
ImageNet [2] classification challenge demonstrated
potential of deep learning in discriminative tasks,
interest grew in applying same technology in generative
modeling tasks. Arguably the most famous success
in this endeavour is generative adversarial network
(GAN) [3] , which pitted two neural network against
each other in Minimax fashion. GAN can produce very
high dimensional and complex distributions in an unsu-
pervised way. Although the images generated by GAN
is approaching natural photographs in both fidelity and
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diversity[4], focus on explicitly making these sam-
ples creative has seen comparatively slower progress.

A notable work in this regard is Creative Adversarial
Network (CAN) proposed in [5]. In it, they show for an
artwork to be creative, it needs to be ambiguous in terms
of style. To that end, they modify GAN, where dis-
criminator is augmented with a new classification loss.
Generator on the other hand try to keep discriminator
confused by trying to maintain classification proba-
bility distribution of discriminator close to uniform.

In this paper, we build on the works of [5] to tackle
the issue of explicitly modeling creativity on generative
adversarial networks. We begin by formalizing creativ-
ity as defined in [5] from decision boundary perspective.
We assume a dataset of painting to be multimodal, each
mode comprising of a single style. In this framework,
creative paintings as defined by CAN are the ones that
lie at the decision boundary of the classification compo-
nent of discriminator. We then show the uniform prob-
ability distribution loss of generator doesnt align well
with above objective, and severely restricts the space of
creative samples. To solve this, we propose a new gener-
ator loss that expands the creative space, while conform-
ing to art-historic definition of creativity as provided in

[5].
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2. Literature Review

2.1. Generating Art

As early as 1990, there has been extensive work
on rendering paintings. Stroke-based rendering
(SBR) is the field of digitally generating paintings
by arranging brushstrokes on a canvas according to
some optimization goal [6]. A closely related field is
texture transfer, there exist a large range of powerful
non-parametric algorithms that can synthesise pho-
torealistic natural textures by resampling the pixels
of a given source texture [7, 8]. More recently, there
is growing interest in neural style transfer[9], which
given a pair of content and style images, try to stylize
the content image along the style of style image. A
common theme in all of these algorithms is that they
start from a random noise image or already existing
picture, then gradually render it by referencing a
particular painting. This reliance on a single painting
(style) is far simpler objective than trying to teach
abstract, high-level artistic characteristics to a model.

Very recently, some works have attempted to apply
generative modeling in neural style transfer [10, 11].
Although they can capture more abstract concepts like
Cubism, Impressionism etc., these models are still lim-
ited to just one such concept.

2.2. Deep Generative Models

Deep Generative Models are unsupervised or semi-
supervised methods to model the distribution of very
high dimensional data like text, image, speech etc.
Common approaches in this field include Variational
Autoencoder (VAE) [12], Generative Adversarial Net-
work (GAN) [3], autoregressive models[13], and nor-
malizing flow models[14]. These are use parametric
approaches to model data distribution, and through it-
erative optimization, try to reduce the distance between
model distribution with data distribution. In image do-
main, which is of relevance to our work, GAN tends to
consistently outperform the alternatives [3].

2.3. Generating Decision Boundary Samples

Decision boundary of a trained classifier is the re-
gion of data distribution where two or more classes have
equal probability in predicted class probability distribu-
tion. Generating samples from near decision boundary
region has drawn special attention in adversarial attack
literature [15, 16], which try to find minimum perturba-
tion to fool a classifier for a particular sample. These
methods however start with a sample of training data,

and gradually drive it towards decision boundary. [17]
uses GAN to model decision boundary distribution, and
can generate new boundary samples very efficiently.

3. Methodology

CAN paper [5] interpreted creative artwork as
one that is stylistically ambiguous. They argued
While GAN is able to emulate training data well,
the images it generates are not very creative. To
remedy this, they proposed a style ambiguity loss.

A vanilla GAN has two components, Generator (G)
and Discriminator (D). The discriminator tries to dis-
criminate between real images of the training set and
fake images generated by the generator. The genera-
tor tries to generate images similar to the training set
without seeing these images. It does so by mapping a
random noise z to image space. Both of these networks
are trained simultaneously, in minimax fashion (1).
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CAN [5] augments both of these components with addi-
tional loss. Given a dataset of paintings along with their
style labels, discriminator in CAN also tries to classify
the style of paintings. Generator on the other hand, apart
from trying to make generated paintings realistic,, it also
tries to make their style ambiguous. To achieve that,
it guides the class probability distribution of generated
paintings towards uniform distribution (2).
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In this paper, we argue this uniform distribution
loss is too strict and narrows the creative subspace
of painting space. Style ambiguity, as defined in
[5], is achieved when discriminator assigns equally
high probability to just two styles, even if the rest
are assigned low probability. This ensures, according
to discriminator, generated painting doesnt entirely
conform to any particular style, giving it the desired
ambiguity. While equal probability for all styles is
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Figure 1: Comparison of creative subspace. 1(a) shows the samples
from CAN’s creative subspace (yellow). 1(b) shows the samples from
subspace of our proposed method

of course in some sense more ambiguous, this is not
necessary to conform to ambiguity definition as pro-
vided in psychology-based theory of creativity of [18].

This difference will perhaps be better clarified
from decision boundary perspective. In figure 1 is
the decision boundary of a neural network, trained
on PCA transformed 2D space of Wine dataset [19].

Under uniform distribution loss of [5], creative sam-
ples can only come from the region around the intersec-
tion of all style regions, as depicted in figure l1a. In our
method, creative samples can come from the intersec-
tion of any two style regions,as depicted in 1b. So while
fully conforming to the ambiguity definition of [18], this
new method significantly expands the creative subspace
to sample paintings from, as can be seen from figure 1b.

Technically, we replace the class ambiguity loss of
generator and keep the classification loss. To find a suit-
able loss function that is low around decision bound-
ary but high everywhere else, we turn to adversarial at-
tack literature. In particular, we use the Carlini-Wagner
loss proposed in [20], which quantifies the difference in
probability of two highest probable styles (3):

D), = max(D(x)) 3)

Where where x is image, y is the label with highest as-
signed probability and D(x); represents probability as-
signed to j-th label by discriminator. So our final com-
bined loss is (4):
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So to summarize, our complete training algorithm is
shown in algorithm 1.

Algorithm 1 Proposed training algorithm with step size
@, using mini-batch SGD for simplicity

1: Input:mini-batch images x, matching label ¢, num-
ber of training batch steps S
forn=1to S do
Z ~ N(0,1)? {Draw sample of random noise}
X < G(9){Forward through generator}
s}, < D,(x){real image, real/fake loss}
57, < D(C|x) {real image, multi class loss}
sé «— D, (%) {fake image, real/fake loss}
sg — (D(G(2))e — maxsz(D(G(z))e) {Prposed
decision Boundary loss, ’c’ is the highest probable
label}
9: Lp « log(sy,) + log(s}) + log(1 — sé)
10: D « D — adLp/dD {Update discriminator}
11: L « log(sé) - 5G
12: G « G — adLs/0G {Update generator}
13: end for

B A A

Table 1: Artistic Styles Used in Training

Style name Image number
Abstract-Expressionism 2782
Minimalism 1337
Naive Art-Primitivism 2405
Art-Nouveau-Modern 4334
Baroque 4241
Color-Field-Painting 1615
Contemporary-Realism 481
Cubism 2236
Early-Renaissance 1391
Expressionism 6736
Fauvism 934
Mannerism-Late-Renaissance | 1279
High-Renaissance 1343
Impressionism 13060
New-Realism 314
Northern-Renaissance 2552
Pointillism 513
Pop-Art 1483
Post-Impressionism 6452
Realism 10733
Rococo 2089
Romanticism 7019
4. Result

We use a Wikiart dataset for to train our model.
This dataset have around 80,000 paintings from 1,119



Figure 3: Images generated by our proposed method

artists and of 25 styles. We removed some styles of
very few number of samples and trained on 22 classes
(Table 1) . In figure 2 and 3, we compare the output
of both methods. Figure 2 shows the images gener-
ated by CAN, figure 3 shows the images generated
by our method. Please note that we dont claim to
produce superior quality paintings compared to CAN,
rather more diverse paintings due to extended space.

In the experiment below (Figure 4), we ran paint-
ings generated by both our model and CAN through the
trained discriminator. By looking at final class probabil-
ity distribution, our goal was to measure the ambiguity
of generated paintings.
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Figure 4: Comparison of difference of unnormalized logits between
highest and second highest probable styles. Lower values indicate
increased uncertainty by classifier in assigning style



5. Conclusion

In this paper, we presented a new method to generate
art by proposing a new loss function that properly
captures the creative subspace of painting distribution.
While our method doesnt aim to or have managed to
produce better quality art compared to baseline, this
allows sampling more diverse and creative paintings.
It has also formalized the notion of creativity using
decision boundary analysis and has presented this
problems connection with adversarial attack literature.

One potential way to extend this work is to utilize
recent advances in adversarial attack field in boundary
sample generation. Ideas and optimization techniques
from style transfer literature can also hopefully be incor-
porated in current work to provide even richer, higher-
quality creative paintings.
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